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Abstract 

Background: Conventional differential gene expression (DGE) analysis inadequately 

captures the complex molecular changes that drive the progression of oropharyngeal 

carcinoma (OC). Variational Autoencoder (VAE) offers a deep learning approach to 

uncover hidden patterns in high-dimensional transcriptomic data, potentially 

Methods: Gene expression datasets were combined, from multiple databases and trained a 

PEM to compress the data into a small, hidden space. Integrated Gradients was utilized, an 

automated attribution technique, to determine the contribution of each gene to each latent 

node (biological representation). Genes that consistently had high attribution scores across 

all latent dimensions were chosen as potential regulators (driver genes). Pathway 

enrichment analysis and classification analyses unveiled the biological significance of these 

genes. 

Results: The PEM learned latent features that are biologically important, and Integrated 

Gradients showed a group of genes that have a big impact on these features. RAP1GAP2 

was consistently one of the top contributors across all 50 latent variables, which is 

noteworthy. RAP1GAP2 had the highest latent-space importance and strong discriminative 

power for telling OC apart, with a performance of 0.769. This occurred despite the lack of 

substantial differential expression in tumors relative to normal samples. Biological 

interpretation suggests that RAP1GAP2, a protein that activates Rap1 GTPase, may help 

tumors invade by turning off Rap1 and changing MAPK signaling and Golgi-mediated 

secretion. 

Conclusion: Our deep learning framework found RAP1GAP2 to be a hidden driver in 

oropharyngeal carcinoma. This demonstrates how VAE and Integrated Gradients may 

discover molecular regulators overlooked by alternative approaches. This method delivers 

novel dimensions about the biology of OC tumors that could benefit future research and 

therapeutic approaches. 

Keywords: Oropharyngeal carcinoma; transcriptomics; deep learning; latent features; 

RAP1GAP2; Rap1 signaling; MAPK pathway; Golgi secretion
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1.1 Overview of Oropharyngeal Carcinoma 

One type of head and neck cancer that has significant clinical significance is oropharyngeal 

carcinoma (OC). Human papillomavirus (HPV) infection has contributed to the increase in 

its incidence in recent decades, making HPV-positive oropharyngeal squamous cell 

carcinoma one of the cancers that is growing the fastest in many high-income nations 

(Lechner et al. 2022). An anatomical illustration of the oropharynx and its neighboring 

regions is shown in Figure 1.1 to highlight the tumor's location and clinical context. 

 

Figure 1.1 Anatomical regions of the head and neck involved in cancer. [Figure created 

using Adobe Illustrator v27.8.1]. 

Because of its subtle early symptoms, OC frequently manifests at advanced stages, leading 

to substantial morbidity and mortality. Therefore, a deeper comprehension of the molecular 

foundations of OC is urgently needed to facilitate earlier detection, better patient 

stratification, and more successful precision therapies (Sabbatini and Manganaro 2023). 

Results for advanced OC are still uncertain despite advancements in systemic treatments, 

radiation therapy, and surgery. Gaining a better understanding of the transcriptome 
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landscape of the tumor may help identify new molecular drivers that could enhance patient 

care. 

1.2 Complexity of Cancer Biology and Analytical Gaps 

The biology of cancer is extraordinarily complex, involving non-linear interactions among 

genes and pathways that drive tumor behavior. Traditional differential gene expression 

(DGE) analysis—which typically relies on linear models or statistical tests to find genes 

individually up- or down-regulated in tumors—has clear limitations when faced with this 

complexity. DGE methods excel at identifying genes with large average expression 

changes, but they may overlook hidden drivers that exert their effects through subtle or 

combinatorial patterns.  

In other words, patient subgroups or tumor phenotypes could be determined by gene sets 

that do not show obvious one-at-a-time differences and thus remain “invisible” to linear 

DGE approaches (Rampášek et al. 2019). Indeed, recent work has cautioned that when 

nonlinear machine learning models identify patient groupings, the defining gene signatures 

might be missed by conventional DGE due to its linear nature (Rampášek et al. 2019).  

Such underappreciated genes or gene interactions may be crucial for the development of 

cancer, making this gap problematic. Analytical techniques that can capture the nonlinear 

dependencies in gene expression data and go beyond linear assumptions are required. One 

potential remedy is explainable algorithms (machine learning), which can reveal 

multivariate gene patterns that would otherwise go unnoticed by applying interpretability 

techniques to complex models (Abbas and El-Manzalawy 2020; Way et al. 2020). In 

conclusion, techniques that can model and explain the complex, nonlinear relationships that 

define cancer biology are necessary to overcome the shortcomings of DGE. 

1.3 Deep Learning for Latent Feature Discovery 

We use deep learning—more especially, unsupervised deep neural networks—to learn 

biologically significant latent variables from transcriptomic data in order to overcome these 

difficulties. A class of deep generative models that are ideal for this task are Variational 

Autoencoder (VAE). A PEM preserves as much information as possible while compressing 

high-dimensional gene expression profiles into a lower-dimensional latent space. Complex 

gene expression patterns can be reduced by this method to a collection of latent features 

that capture patient variability and underlying biological signals. Figure 1.2 illustrates the 

basic architecture of a deep neural network, where an encoder maps gene expression into 



Introduction 

Page | 3  

 

latent representations for downstream interpretation. High-dimensional gene expression 

data are processed through multiple layers of an encoder network to generate low-

dimensional latent features. These latent variables represent condensed biological signals 

and are suitable for interpretation, classification, or further modeling.  

 

Figure 1.2 Basic architecture of a deep neural network. [Figure created using Adobe 

Illustrator v27.8.1].  

Largescale gene expression datasets have seen the successful application of VAE and 

related autoencoder techniques, which have shown promise in modeling non-linear gene 

interactions and enhancing outcome predictions  (Sundararajan et al. 2017). To illustrate 

the ability of deep learning to capture subtle transcriptomic effects of treatment, Rampášek 

et al. demonstrated that a PEM-based model ("Dr.PEM") could learn latent representations 

of cancer cell line expression data that improve drug response prediction (Zhang et al. 

2006). Similar to this, Way et al. used PEM to compress pan cancer gene-expression data 

and discovered that different biological signals (like pathway activities and mutational 

status) emerged when the latent dimensionality was varied. This suggests that deep 

compression can learn complementary aspects of tumor biology that are not possible with 

a single linear compression or DGE analysis (Way et al. 2020). These studies underscore 
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that deep neural networks can extract non-linear features from gene expression data, 

potentially revealing patterns that are not evident to traditional methods. 

However, a known drawback of deep learning models is their limited interpretability—the 

latent features or learned representations are “black boxes” without clear biological 

meaning. In the context of cancer transcriptomics, it is not enough to discover latent 

variables; we also need to understand which genes those variables represent or how they 

relate to known biology. Simply compressing data with a PEM might yield abstract features 

that correlate with disease, but without interpretation we cannot translate those features into 

testable biological insights.  

1.4 Gene Attribution with Integrated Gradients 

To interpret the latent space and connect it back to gene-level biology, we employ integrated 

gradients, a robust feature attribution method for neural networks. Integrated gradients 

provide a way to quantify the contribution of each input feature (in this case, each gene’s 

expression) to a given output or latent variable in the model (Janizek et al. 2023). Formally, 

integrated gradients work by integrating the gradients of the model’s output with respect to 

inputs along a path from a baseline to the actual input, yielding an attribution score for 

every feature that satisfies desirable axioms of fairness and sensitivity (Janizek et al. 2023). 

Introduced by Sundararajan et al. in 2017, this method has become a popular tool for 

explaining deep learning predictions in various domains (Janizek et al. 2023). In our study, 

we harness integrated gradients to attribute genes to latent variables learned by the PEM 

and to any downstream predictive outputs. This approach effectively “opens the black box” 

of the autoencoder by highlighting which genes most strongly influence each latent 

dimension of the model.  

Notably, earlier studies have shown how useful it is to combine feature attribution and deep 

generative models in genomics. For instance, Dincer et al. identified the top contributing 

genes for each latent dimension by applying integrated gradients to the latent features of a 

PEM trained on cancer gene expression data (Janizek et al., 2023). Researchers can anchor 

abstract features in concrete biology by using this post hoc interpretation of latent space. 

For example, based on the genes with the highest attributions, a latent dimension may end 

up representing a pathway or cell cycle signature. Building on these concepts, we derive 

gene-level importance scores for the learned latent factors by combining our PEM with 

integrated gradients. By doing this, we can identify the genes that are most important for 



Introduction 

Page | 5  

 

differentiating oropharyngeal tumors from controls (or other tumor subtypes) and that drive 

the variations recorded in the latent space. In addition to maintaining interpretability, this 

combination of unsupervised, deep learning and explainability techniques enables us to find 

biologically significant patterns that would be missed by linear analysis alone. 

1.5 Revealing Hidden Driver: The Case of RAP1GAP2 

By using this deep learning framework on OC transcriptomic data, new understandings of 

the molecular causes of the disease are revealed. Integrated gradients identify the genes that 

define the latent variables that the variational autoencoder extracts and that summarize gene 

expression patterns across tumors. Our analysis reveals that RAP1GAP2 is a crucial latent 

driver gene in oropharyngeal carcinoma, which is intriguing. With a high attribution score, 

RAP1GAP2 stands out in our model as one of the main contributors to a latent feature that 

is very predictive of the presence of OC. This finding is noteworthy because, according to 

standard differential expression analysis, RAP1GAP2 was not identified as significant; that 

is, its average expression levels between tumor and normal do not differ sufficiently to meet 

standard statistical thresholds. RAP1GAP2 would have been completely overlooked by 

traditional DGE, but our deep learning method revealed it to be a significant participant 

with a nonlinear contribution to the tumor transcriptome. The impact of RAP1GAP2 only 

becomes apparent when taking into account intricate interactions recorded in the latent 

space, demonstrating how deep learning can uncover "hidden" drivers that elude linear 

analysis. 

From a biological standpoint, the implication of RAP1GAP2 in OC is plausible and 

generates new hypotheses. Although RAP1GAP2 itself has not been well-studied in 

oropharyngeal cancer, it belongs to the same family as Rap1GAP (also known as 

RAP1GAP1), which has been reported to act as a tumor suppressor in squamous cell 

carcinoma. In fact, restoring Rap1GAP expression in OC cell lines was shown to reduce 

active Rap1 signaling and significantly slow tumor growth in vivo (Zhang et al. 2006). This 

prior evidence of the Rap1 pathway’s involvement in head and neck cancer provides 

context for our findings: it suggests that downregulation or dysregulation of Rap1-

inhibitory proteins (like Rap1GAP or RAP1GAP2) could contribute to oncogenic processes 

in the oropharynx. Our discovery of RAP1GAP2 as a latent driver, despite its subtle 

expression changes, underscores how deep learning-based analysis can pinpoint 

functionally relevant genes that conventional analyses deem insignificant. Such genes 

might represent early changes or context specific vulnerabilities that are missed when 
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focusing only on large fold-changes. Identifying RAP1GAP2 as highly predictive of OC 

opens the door to further experimental validation and investigation into its potential role in 

tumor suppression or as a biomarker for disease presence. 

1.6 Hypothesis of the Study 

We hypothesize that deep neural networks, particularly Probabilistic Embedding Model 

(PEM) models, can learn latent representations of transcriptomic data that capture complex, 

nonlinear biological signals associated with oropharyngeal carcinoma. These latent features 

are expected to reveal molecular regulators that conventional differential gene expression 

(DGE) analyses may overlook due to their reliance on linear assumptions. By integrating 

unsupervised deep learning with interpretability techniques such as integrated gradients, 

we anticipate uncovering key gene-level contributors—such as RAP1GAP2—that drive 

tumor invasion and progression despite showing no significant differential expression. This 

approach offers a novel avenue for identifying biologically relevant signals embedded in 

high-dimensional gene expression data. 

1.7 Significance of the Study 

Comprehending the molecular pathways underlying oropharyngeal cancer (OC) is a 

significant challenge, especially due to the constraints of conventional gene expression 

analysis techniques that frequently depend on linear assumptions. This paper presents a 

deep learning system that may reveal nonlinear and concealed transcriptome signals, 

providing an innovative method for identifying genetic drivers of ovarian cancer. Utilizing 

variational autoencoders and integrated gradients, we discovered RAP1GAP2 as an 

unknown factor in tumor invasion and development, despite its absence of differential 

expression according to traditional statistical standards. This underscores the capability of 

modern computational modeling to not only augment but also exceed conventional 

analytical methods. The results of this study provide novel avenues for biological research 

and therapeutic development in ovarian cancer and create a framework for the application 

of interpretable deep learning to other intricate diseases. 

1.8 Aims and Objective 

This study aims to uncover hidden transcriptomic patterns and identify novel gene-level 

drivers of oropharyngeal carcinoma (OC) by applying deep neural network-based 

methods—specifically variational autoencoders and integrated gradients—that go beyond 

the limitations of traditional differential expression analysis. 
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Objectives of the study are, 

• To apply deep learning (PEM) for compressing gene expression into latent features. 

• To detect complex, nonlinear gene patterns missed by standard tools. 

• To interpret latent features using Integrated Gradients for gene attribution. 

• To combine unsupervised modeling with supervised classification. 

• To identify novel molecular drivers involved in OC progression. 

• To compare the performance of this method with traditional differential gene expression 

approaches.
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2.1 Workflow of the Study 

The design of the overall study is illustrated in Figure 2.1 

Figure 2.1: Workflow of the study pipeline. PCA-transformed multi-dataset gene expression is 

encoded via PEM to latent space, followed by Integrated Gradients-based gene attribution and 

supervised learning to identify molecular drivers and extract biological insights of the latent 

spaces. [Figure generated using Adobe Illustrator v27.8.1]. 

2.2 Datasets Retrieval 

Publicly available gene-expression datasets of oral carcinoma (OC) generated using 

different platforms—including [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 
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2.0 Array, [HG-U133A] Affymetrix Human Genome U133A Array, Illumina NextSeq 500 

(Homo sapiens)—were downloaded. A total of 19 datasets were parsed from the National 

Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database for Oral Cancer 

types, where a python library GEOparse v2.0.0 (https://github.com/guma44/GEOparse) 

was incorporated to extract the sequencing data with their phenotype data from the database 

server. All information about the datasets including sample size mentioned in Table 2.1. 

Table 2.1 Expression Profiling Datasets for OC 

GEO_Accession Samples Platform Study_Type 

GSE37991 80 (40 tumor + 

40 normal) 

GPL6883 (Illumina 

HumanRef‑8) 

Expression 

profiling by array 

GSE23558 31 (27 tumor + 4 

normal) 

GPL6480 (Agilent 

44K) 

Expression 

profiling by array 

GSE25099 79 (57 tumor + 

22 normal) 

GPL5175 

(Affymetrix Exon 

ST) 

Expression 

profiling by array 

GSE10121 41 (35 tumor + 6 

normal) 

Operon Oligoset 

4.0 

Expression 

profiling by array 

GSE31853 11 (8 tumor cell 

lines + 3 normal) 

GPL96/570 

(Affymetrix) 

Expression 

profiling by array 

GSE131182 12 (6 paired 

tumor + normal) 

GPL20301 

(Illumina HiSeq) 

Expression 

profiling by 

RNA‑seq 

GSE145272 10 (5 metastatic 

+ 5 non-

metastatic) 

HiSeq 2500 

RNA‑seq 

Expression 

profiling by 

RNA‑seq 

GSE217142 6 (primary + 

recurrent tumors) 

NovaSeq 6000 

RNA‑seq 

Expression 

profiling by 

RNA‑seq 

GSE85195 49 (34 OSCC + 

15 OPL) 

GPL6480 (Agilent 

44K) 

Expression 

profiling by array 

GSE168227 6 paired tumor-

normal samples 

Agilent lncRNA 

microarray 

Expression 

profiling by array 

GSE84805 6 paired tumor-

normal samples 

Agilent lncRNA 

array 

Expression 

profiling by array 
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GSE30784 229 total (167 

tumor + others) 

GPL570 

(Affymetrix U133 

Plus 2.0) 

Expression 

profiling by array 

GSE2280 32 (27 non-

metastatic + 5 

metastatic) 

GPL96 

(Affymetrix 

U133A) 

Expression 

profiling by array 

GSE3524 20 (16 tumor + 4 

normal) 

GPL96 

(Affymetrix 

U133A) 

Expression 

profiling by array 

GSE6791 154 (119 tumor + 

35 controls) 

Affymetrix U133 

Plus 2.0 

Expression 

profiling by array 

GSE41442 55 (45 tumor + 

10 normal) 

GPL570 

(Affymetrix) 

Expression 

profiling by array 

GSE37371 100 (50 tumor + 

50 normal) 

GPL96 

(Affymetrix) 

Expression 

profiling by array 

GSE23030 30 metastatic 

tongue OSCC 

GPL5175 

(Affymetrix Exon 

ST) 

Expression 

profiling by array 

GSE29000 50 (40 tumor + 

10 normal) 

GPL570 

(Affymetrix) 

Expression 

profiling by array 

Extracted results according to the supplied ArrayExpress accession ids filtered out based 

on the treatment and condition of the samples. We got a total of 1001 samples from all the 

datasets combined, where sample number with OC positive was 754. Samples treated with 

radiation therapy, chemotherapy, targeted therapy, immunotherapy, hormonal therapy and 

drugs were excluded from the study manually.  

2.3 Data Integration, Batch Effect Removal and Preprocessing  

To amalgamate data from different platforms, a python data analysis library pandas v1.5.3 

(McKinney 2011) was incorporated. Data imputation was conducted by missForest v0.9 

(Stekhoven and Bühlmann 2012) package in R to avoid the NA values in the datasets. For 

concatenating multiple datasets from multiple platforms with different techniques, a batch 

effect correction method based on python library was applied on the integrated data to 

combat the platform specific biases. A function called “ComBat” from python library 

pyComBat v0.3.2 (Behdenna et al. 2023) was used to remove the technical biases that arose 

by the integration process. Expression data of merged dataset was log-transformed, Z-

standardized on each gene to ensure that all features are on the same scale.  
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2.4 Training Deep Neural Network Models 

2.4.1 Datasets Merging and Standardization 

After manual selection and preprocessing, we had 663 cancer-positive samples, each 

containing 11020 genes—common in all datasets. Despite the high dimensional gene 

expression matrix, which was complex to interpret the samples with their condition, a 

principal component analysis was conducted with 500 PCs (n_components=500) while 

preserving all important data and variance among the samples. PCA was performed in R 

using the following packages: stats v4.2.3, factoextra v1.0.7 (Kassambara and Mundt 2020) 

for extraction and display of PCA results, and dplyr v1.1.4 (Hadley Wickham et al. 2020) 

for data manipulation.  

2.4.2 Traditional Deep Learning Model 

A probabilistic latent variable model was built on reduced PC data to learn a compact, non-

linear delineation of the high-dimensional gene expression data. This is a type of neural 

network that contains an encoder and a decoder network with an entropy-limited latent 

mapping with D latent variables (here, D ≪ M, where M=500PC, represents the number of 

features) in the middle. This process generates an embedding Z, which preserves the whole 

information of the input (500PC) into a lower dimensional space (Bro and Smilde 2014). 

Categorically, the encoder network, defined as 𝑓𝜙: X → Z, maps from the input space X ∈

ℝ𝑀 to latent embedding Z ∈ ℝ𝐷. Similarly, the decoder network, defined as 𝑔𝜑: Z →

X maps the embedding Z back to input space. The main objective of the model is to 

minimize the anticipated squared Euclidean (L2) norm (Tian et al. 2017) between the input 

and its reconstruction:  

𝐦𝐢𝐧
𝝓,𝝋

 𝔼 ∥
∥𝒙 − 𝒈𝝋 (𝒇𝝓(𝒙))∥

∥
𝟐

𝟐

       … ... … (i) 

Here in (i) equation, 𝜙 and 𝜑 are the parameters of the encoder and decoder, respectively, 

and  𝑥̂ = 𝑔𝜑 (𝑓𝜙(𝑥)) represents the reconstructed input for every sample. Where, L2 loss 

denoted by ∥ 𝑥 − 𝑥̂ ∥2
2, captures the total reconstruction error across all dimensions of the 

input. Overtly, this corresponds to:  

(𝒙𝟏 − 𝒙𝟏)𝟐 + (𝒙𝟐 − 𝒙̂𝟐)𝟐 + ⋯ + (𝒙𝒏 − 𝒙̂𝒏)𝟐       … ... … (ii) 
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2.4.3 Additional Sample Distribution 

Unlike conventional approach, we used probabilistic embedding model (PEM), which 

encodes each sample as a probability distribution—captures uncertainty and biological 

variability inherent in gene expression profiles. Samples with 500 principal components 

(PCs) were used to construct the input matrix 𝑋 ∈ ℝ𝑁×𝑀, where 𝑁 is the number of samples 

and 𝑀 is the number of features. This matrix was passed to an encoder 𝑓𝜃, which outputs a 

mean vector 𝜇𝑥 ∈ ℝ𝐷 and a variance vector 𝜎𝑥 ∈ ℝ𝐷: 

𝒇𝝓: 𝒙 → (𝝁𝒙, 𝝈𝒙),  𝒁 ∼ 𝓝(𝝁𝒙, 𝝈𝒙)      … ... … (iii) 

A decoder 𝑔𝜑 reconstructs the input from the sampled latent vector 𝑍. The model is trained 

to minimize the following loss: 

𝐦𝐢𝐧
𝝓,𝝋

 𝔼 ∥ 𝒙 − 𝒈𝝋 (𝒇𝝓(𝒙)) ∥𝟐
𝟐 + KL[(𝝁𝒙, 𝝈𝒙), 𝓝(𝟎, 𝟏)]      … ... … (iv) 

The first term ensures accurate reconstruction, while the KL divergence regularizes the 

latent space by encouraging it to resemble a standard (Pan et al. 2020). After training, the 

learned latent variables 𝑍 were used for gene importance analysis using Integrated 

Gradients, followed by pathway enrichment.  

2.5 Neural Network Design and Hyperparameter Optimization 

2.5.1 Train Model with Adam Optimizer 

PEM models were trained to unite the PCs from the OC gene expression matrix as inputs. 

Three-layer encoder and decoder networks were designed as a mirror of each other. The 

model was trained in batches of 50 samples by using (Wang et al. 2022), with a learning 

rate of 0.0005, with weight initialized randomly using the Glorot uniform method. 

2.5.2 Cross validate and Extract Best Latent Dimension 

To determine the best fitted latent space as per my study, we deliberately selected a set of 

sizes: 5, 10, 25, 50, 75, and 100. This comprehensive selection was made to give our models 

a broad scope to capture a wide range of information from the datasets. Hyperparameter 

tuning was performed to fine-tune hyperparameters including the dropout rate and the 

number of neurons per layer using 5-fold cross-validation, guided by validation 

reconstruction error (Elgeldawi et al. 2021). We tested dropout values including 0, 0.2, 0.4, 

and 0.6. For hidden layer configurations, we explored multiple settings such as (50, 5), 
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(100, 25), (250, 50), (250, 100), and (300, 150), where the first and second values indicate 

the number of neurons in the first and second hidden layers, respectively. The model was 

implemented in Python using Keras v2.2.4 (Chollet 2015) and TensorFlow v1.12.0 (Filus 

and Domańska 2023). 

2.6 Learning Robust Latent Representations 

To find out the stable and fruitful biological representation of the data, VAE were trained 

with different random initializations and latent dimensionalities. For each latent size, 

training across multiple random seeds was repeated, resulting in a large collection of 

embeddings. To aggregate latent variables 𝒁 ∈ ℝ𝑑 generated across multiple folds of 

different models, k-means clustering was applied to group (I) similar latent features 

together (Sinaga and Yang 2020). To obtain the final ensemble latent dimension 

𝒁𝒆𝒏𝒔𝒆𝒎𝒃𝒍𝒆 ∈ ℝ𝐿, G-means clustering was implemented, resulting in a fixed latent size 

L=50, which was used across all samples for downstream analysis. The final latent 

embedding for each sample was constructed by averaging all latent variables within each 

cluster (Ri and Kim 2020).  

2.7 Gene Attribution and Pathway Analysis 

2.7.1 Sensitivity-Based Scoring (SBS) for Gene-to-Latent Attribution 

To determine which gene contributed to what latent variables, a custom sensitivity-based 

scoring (SBS) approach was applied. SBS was first integrated into the method to calculate 

the importance of each PC for every latent variable. Then these attributions were scaled to 

gene level with the PC level weights, resulting in gene-level importance scores and by 

averaging we got global gene attributions for each latent.  

2.7.2 Pathway Enrichment Analysis of Latent Variable-Associated Genes 

To interpret the biological representation, top-ranked genes derived from every ensemble 

latent variable, we performed pathway enrichment analysis using the g:Profiler tool via the 

gprofiler2 v2.34 (Peterson et al. 2020) R package. Gene sets with the highest attribution 

scores were input into the gost() function, which maps genes to known functional categories 

including Gene Ontology (GO) terms (Biological Process, Molecular Function, Cellular 

Component), KEGG pathways, and Reactome pathways (Carbon et al. 2017; Jassal et al. 

2020; Kanehisa et al. 2023). We used the default settings for the organism (Homo sapiens), 

applied multiple testing correction via the Benjamini–Hochberg method (FDR < 0.05), and 
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excluded electronic GO annotations to improve specificity (Ferreira and Zwinderman 

2006). The results were visualized and ranked by adjusted p-values and term size to 

highlight the most enriched biological functions associated with each latent variable. 

2.7.3 Gene Set Enrichment Analysis (GSEA) 

To uncover the biological functions associated with each latent variable, we performed 

Gene Set Enrichment Analysis (GSEA) using pre-ranked gene lists derived from latent 

variable attributions (Balagopalan et al. 2009). The enrichment results were obtained using 

a standardized pipeline and summarized across all latent variables. Pathways with a false 

discovery rate (FDR) < 0.05 were considered statistically significant. We calculated the 

normalized enrichment score (NES) for each term-latent pair and constructed a matrix of 

NES values. To focus on the most variable biological patterns, we selected the top 50 

pathways based on the highest variance across latent variables. These were visualized as a 

heatmap using the seaborn v0.11.5 (Waskom 2021)library in Python, highlighting 

pathway–latent associations that may represent underlying biological signals.  

2.8 Supervised Deep Learning Model Training 

2.8.1 Gene Selection and Data Collection 

To identify important driver genes for oropharyngeal carcinoma (OC), we analyzed gene 

attribution scores generated by the Deep model across 50 latent variables. Based on this 

analysis, we selected 20 genes that consistently ranked among the top contributors across 

multiple latent dimensions. These candidate driver genes were validated using an 

independent dataset, which included both OC and non-tumor control samples profiled on 

Illumina HiSeq 4000 and NovaSeq 6000 sequencing platforms.  

2.8.2 Normalization and Batch Correction 

To address potential batch effects and platform-specific variability, we applied gene-wise 

Z-score normalization within each batch. Following normalization, batch correction was 

carried out using the empirical Bayes method implemented in the pycombat v0.3.5. All data 

manipulation and preprocessing were performed using the pandas v2.2.1 and numpy 

v1.24.4 libraries, with additional support from scanpy v1.9.6 (Wolf et al. 2018) for 

annotation and matrix handling. 
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2.8.3 Model Development and Training 

We developed and trained three types of deep learning models to classify samples into OC 

or control groups based on the expression of the 20 selected genes. These models were 

implemented using TensorFlow 2.12.0 with the Keras backend. Hyperparameter tuning was 

conducted using the kerastuner library v1.3.5, and model performance was assessed 

through five-fold stratified cross-validation (Wazery et al. 2023). The optimal MLP 

architecture consisted of two hidden layers with 128 and 64 neurons respectively, each 

followed by ReLU activation and dropout layers with a rate of 0.2. A final sigmoid-

activated output layer was used for binary classification (Tolstikhin et al. 2021). All models 

were trained using the Adam optimizer (Wang et al. 2022) (learning rate = 1e-4), binary 

cross-entropy loss, a batch size of 32, and early stopping based on validation loss with a 

patience of 10 epochs. 

2.8.4 Evaluation and Visualization 

Model performance was evaluated using two key metrics: area under the precision–recall 

curve (AUPRC) and area under the receiver operating characteristic curve (AUROC). 

Visualizations of model predictions, ROC curves, and PR curves were generated using 

matplotlib v3.8.0 and seaborn v0.13.2. All experiments were conducted in a Linux-based 

computing environment. 

2.9 Differential Gene Expression analysis 

Expression data were analyzed using DESeq2 v1.40.2 (Love et al. 2014). Low-expression 

entries were removed before normalization. Variance-stabilizing transformation was 

applied for visualization. Differential expression analysis was performed using negative 

binomial distribution, and significance was defined as adjusted p-value < 0.05 and absolute 

log₂ fold change > 1. Volcano plots were generated using EnhancedVolcano v1.20.0 (Blighe 

et al. 2021).
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3.1 Data Preprocessing and Quality Assessment 

Highly expressive models such as deep neural networks tend to overfit when the sample 

size is small, we collected 19 available expression datasets from different platforms for 

human Oropharyngeal Cancer (OC). To remove the platform-specific biases, we 

preprocessed the datasets (Figure 3.1A), manually excluded samples that did not satisfy 

the requirements, and finalized 643 samples for PCA, with 11020 genes common across all 

datasets. Standardized gene expression values were visualized using a boxplot (Figure 

3.1A) among all the samples, showing consistent distribution across samples and 

confirming effective scalability. PCA was performed on the 643 samples expression to 

reduce the dimension of the features in 500 PCs 

 

Figure 3.1: Preprocessing and PCA of gene expression data. (A) Boxplot of standardized 

expression values for 11,020 genes across 643 finalized samples. Each box represents one 

sample, where dots represent outliers. (B) PCA scatterplot, containing the first two 

principal components for all samples; X axis containing PC1 and Y axis containing PC2 

(C) Scree plot showing the proportion of variance explained by the first 50 principal 

components. The variance contribution is uniformly low, supporting their use in 

downstream neural network training. [Figure generated using Python v3.12]. 
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for model training, where scatterplot (Figure 3.1B) showed no ostensible clustering or 

batch effect, indicating appropriateness for unsupervised modeling. The scree plot (Figure 

3.1C) of the first 50 PCs shows uniformly low variance, confirmed that the components are 

evenly distributed. Other 450 PCs are similarly contained the same proportion of variance 

around 0.002. A minor drop in ratio in PC9 was observed, which likely reflects numerical 

or structural variance fluctuations other than biological interpretation.  

3.2 Latent Space Extraction Using Deep Neural Network 

Multiple models trained using the latent dimensions, including 5, 10, 25, 50, 75, and 100, 

and evaluated their ability to reconstruct the same sample using the parameters based on 

reconstruction error in both training and validation sets (Figure 3.2A).  
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Figure 3.2: Model Performance and Gene Attribution. (A) Barplot showing 

reconstruction error for both training and validation sets across different latent dimensions. 

X axis represents the latent nodes and Y axis showing the reconstruction error values. (B) 

Barplot showing the top 10 genes contributed to Latent Node 0, based on absolute 

Integrated Gradients (IG) scores from the ensemble attribution matrix. [Figure generated 

using Python v3.12]. 

As the number of latent nodes increases, the reconstruction errors reduce as per the change, 

representing higher capacity of reconstruction. However, the improvement stops after 50 

dimensions, which implies that higher nodes can increase the risk of overfitting the data as 

well as the complexity of the process. Therefore, we selected 50 nodes of latent to finalize 

the PEM models and got multiple folds of latent from all the models in each fold. This 

hyperparameter tuning helped us to reach the most relevant latent spaces, understand the 

core biology of OC from the complex environment of the data.  

Figure 3.2B, a sample representation of the top 10 genes in the first latent dimension, 

showing the strong connection with the latent node 0, ranked by their importance score. 

These genes, including MSRB1 (0.00416), TTI2 (0.00389), MPP5 (0.00358), ATF3 

(0.00354), PYHIN1 (0.00349), HPCAL1 (0.00349), PICALM (0.00342), COMMD8 

(0.0033), SFT2D2 (0.00325), RNF130 (0.00320), are the primary drivers of the 

representation/signal captured by this latent space. Top 10 drivers of the representation 

from all 50 lanterns mentioned in Appendix I. 

3.3 Latent Variables Capture Distinct Gene Programs and Biological 

Pathways 

To characterize the biological meaning of the latent space learned by the PEM model, we 

analyzed gene-level attributions using Integrated Gradients. We computed mean attribution 

scores for each gene across all 50 latent variables (latent nodes) and selected the top 20 

genes with the highest overall contributions (Figure 3.3A). These included genes such as 

DDX43, FABP4, RAP1GAP2, KCNK5, XIST, ZNF839, CTH, ERC2, and PDK3, among 

others. Mean attribution scores across latents ranged from 0.0035 to 0.0055, with FABP4 

and CTH contributing strongly to Latent 24 and 25, and ERC2 and ZNF839 dominating 

Latent 28, indicating distinct gene modules regulating each latent. 

Hierarchical clustering of latent variables based on gene attribution profiles revealed 

modular structures, where sets of genes co-regulated subsets of latent nodes. For instance,  
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Figure 3.3: Interpretation of PEM latent variables through gene attribution and 

pathway enrichment. (A) Heatmap showing the mean Integrated Gradients attribution 

scores of the top 20 genes across all 50 latent variables. Both rows (genes) and columns 

(latents) were hierarchically clustered, revealing modular structures among gene-latent 

relationships. (B) Dot plot summarizing the most significantly enriched biological 

pathways for selected latent variables. Each dot represents a latent-pathway pair, with dot 
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size and color corresponding to the enrichment significance (−log₁₀ padj). [Figure 

generated using Python v3.12]. 

Latents 24, 25, and 28 clustered closely and shared top-contributing genes involved in lipid 

metabolism and oxidative stress response, such as FABP4, CTH, and SAA2-SAA4. 

Figure 3.3B illustrates the g: Profiler enrichment analysis of top-ranking genes from 

individual latent variables. Each dot represents a significantly enriched biological process, 

mapped to its corresponding latent node. Several latent variables were linked to distinct 

and functionally relevant pathways. For example, Latent 9 showed strong enrichment for 

DNA integration, suggesting potential involvement in genomic stability or viral interaction 

processes. Latent 20 was enriched for Golgi lumen acidification and Golgi-associated 

signaling, indicating a role in intracellular trafficking and post-translational modification. 

Latent 5 was associated with regulation of nervous system development, while Latent 33 

was enriched for ECM-receptor interaction, pointing toward microenvironmental and 

adhesion-related mechanisms. Pathways related to RNA degradation (Latent 39), base 

excision repair (Latent 34), and neuromuscular junction development (Latent 45) were also 

identified, reflecting the biological diversity embedded within the latent dimensions. A 

complete table of enriched pathways, including adjusted p-values, enrichment scores, and 

associated gene sets for all 50 latent, is provided in Appendix II. 

3.4 Functional Characterization of Latent Variables via GSEA 

To further evaluate the functional relevance of the latent space, we performed Gene Set 

Enrichment Analysis (GSEA) using the ranked gene attributions for each of the 50 latent 

variables and visualized the results in a pathway–latent heatmap (Figure 3.4A). The 

heatmap displays the Normalized Enrichment Scores (NES) across a curated panel of 

KEGG pathways, capturing the direction and magnitude of enrichment. Red tones indicate 

positive enrichment (NES > 0), whereas blue tones indicate negative enrichment (NES < 

0). 

Several latent variables were significantly enriched for known cancer-related and immune-

related pathways. Latent 6 and Latent 21 were positively enriched for Ribosome and 

Oxidative Phosphorylation, processes often upregulated in proliferative tumor cells. Latent 

15 and Latent 24 showed strong positive enrichment in immune pathways such as JAK-

STAT signaling, Cytokine–cytokine receptor interaction, and Antigen processing and 

presentation. Latent 36 and Latent 48 were associated with Mismatch repair, Fanconi 
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anemia, and Cell cycle, indicating potential links to genomic instability. Negative 

enrichment was observed for several inflammation-related pathways (e.g., Inflammatory 

bowel disease, Primary immunodeficiency, NF-kappa B signaling), particularly in Latents 

3, 9, and 18. Other Results of GSEA mentioned in Appendix III. 

 

Figure 3.4: Pathway enrichment heatmap of PEM latent variables using GSEA. 

Heatmap shows NES for pathways enriched across 50 latent variables. Each row represents 

a pathway and each column a latent node. Red shades indicate positive enrichment (NES 

> 0) and blue shades indicate negative (NES < 0). [Figure generated using Python v3.12]. 



Results 

Page | 22  

 

 



Results 

Page | 23  

 

Figure 3.5: Identification of key driver genes and classification performance in 

oropharyngeal carcinoma. (A) Violin plots showing the expression distributions of 20 

consensus genes, derived from PEM latent space attribution scores, across control and 

oropharyngeal OC samples in an external high-throughput RNA-seq dataset. (B) 

Precision–Recall (PR) curves comparing three supervised deep learning models trained on 

the expression profiles of the 20 genes. (C) Receiver operating characteristic (ROC) curves 

for the same models. [Figure generated using Python v3.12]. 

3.5 Deep Learning-Based Classification of Candidate Driver Genes in 

Oropharyngeal Carcinoma 

To visualize the expression profiles of the 20 candidate driver genes across control and OC 

samples, we generated violin plots (Figure 3.5A) and boxplots in Appendix IV. Several 

genes exhibited substantial differential expressions between the two groups. Notably, 

RAP1GAP2, CTH, and FABP4 were highly expressed in OC samples compared to controls, 

suggesting their potential role as diagnostic or functional markers. Conversely, genes like 

XIST and ERC2 displayed more variable patterns, hinting at subtype-specific or 

microenvironmental influences. We then assessed the ability of the 20-gene panel to 

classify OC using supervised deep learning models. As shown in the performance plots 

(Figure 3.5B & C), the MLP model consistently outperformed CNN and LSTM across all 

evaluation folds. The MLP achieved a mean AUPRC of 0.86 and mean AUROC of 0.80, 

followed by the CNN with an AUPRC of 0.81 and AUROC of 0.79, and the LSTM with an 

AUPRC of 0.78 and AUROC of 0.70. 

These results indicate that the MLP model is best suited for classifying OC based on the 

selected latent-informed gene set. The consistently high AUPRC and AUROC suggest that 

the PEM-derived genes, particularly RAP1GAP2, PDK3, and FABP4, may serve as 

effective driver markers or classifiers for oropharyngeal carcinoma in high-throughput 

transcriptomic data (Table 3.1), (Appendix V).  

3.6 RAP1GAP2 Emerges as the Most Predictive Gene in Single-Feature 

Classification Models 

To identify the most predictive gene within the consensus panel, we trained single-feature 

models for each of the 20 genes and computed their individual feature importances using 

the supervised MLP model described previously. The resulting importance scores are 

visualized in Figure 3.6A, where RAP1GAP2 ranked as the most informative gene, 
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followed closely by XIST, SLC9A7, and FABP4. This suggests that RAP1GAP2 holds 

strong discriminative power for separating oropharyngeal carcinoma from control samples, 

reinforcing its prominence in both latent attribution analysis and expression profiling. 

To validate its predictive strength, we constructed a single-gene MLP classifier using only 

the expression values of RAP1GAP2. The resulting Precision–Recall curve, shown in 

Figure 3.6B, achieved a mean AUPRC of 0.769, indicating robust classification 

performance using this gene alone. This further supports the hypothesis that RAP1GAP2 

may serve as a potent driver or biomarker of oropharyngeal carcinoma and warrants further 

experimental validation. 

Table 3.1 Performance metrics for single-gene classification models 

Gene AUROC AUPRC Accuracy F1 Precision Recall 

WDR41 0.640 0.650 0.556 0.711 0.560 0.971 

KCNK5 0.540 0.560 0.524 0.686 0.545 0.924 

GATA3 0.590 0.580 0.620 0.667 0.657 0.676 

DDX43 0.550 0.570 0.513 0.629 0.550 0.733 

DTWD1 0.650 0.640 0.535 0.679 0.554 0.876 

XIST 0.594 0.708 0.540 0.688 0.556 0.905 

SAA2-SAA4 0.557 0.621 0.556 0.709 0.561 0.962 

ERC2 0.550 0.560 0.610 0.709 0.610 0.848 

ENO3 0.610 0.590 0.567 0.722 0.565 1.000 

SLC9A7 0.710 0.710 0.594 0.689 0.604 0.800 

CTH 0.590 0.590 0.604 0.711 0.603 0.867 

PDK3 0.570 0.600 0.567 0.675 0.583 0.800 

GSTT2 0.643 0.664 0.642 0.735 0.628 0.886 
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RPARP-AS1 0.528 0.619 0.540 0.699 0.552 0.952 

ZNF839 0.550 0.590 0.556 0.711 0.560 0.971 

FABP4 0.520 0.530 0.535 0.695 0.550 0.943 

RAP1GAP2 0.710 0.769 0.730 0.760 0.700 0.940 

HAPLN1 0.606 0.676 0.615 0.692 0.628 0.771 
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Figure 3.6: RAP1GAP2 identified as the top predictive gene for oropharyngeal 

carcinoma classification. (A) Feature importance scores for each of the 20 genes in the 

supervised MLP model. RAP1GAP2 ranked highest, suggesting its dominant role in 

classification. (B) Precision–Recall curve for the single-gene classifier trained exclusively 

on RAP1GAP2 expression. The model achieved a mean AUPRC of 0.769, indicating strong 

predictive capacity from this gene alone. [Figure generated using Python v3.12]. 

 

Figure 3.7: Identification of RAP1GAP2 as a latent driver despite non-significance in 

differential expression analysis. (A) Raw gene expression across samples before 

normalization. (B) Normalized expression profiles of all samples. (C) Volcano plot of 
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differential gene expression analysis: upregulated, downregulated, and non-significant 

genes are shown. RAP1GAP2, highlighted in red, was not significantly differentially 

expressed but was identified as a top contributor across all latent variables and showed the 

highest classification ability in the deep learning model, supporting its role as a hidden 

driver in oropharyngeal carcinoma. [Figure generated using R v4.3.2 with RStudio 

v2023.09.1]. 

3.7 RAP1GAP2 Emerges as a Key Latent Driver Despite Non-

Significance in Differential Expression Analysis 

Figure 3.7A & B show the gene expression distributions of the RNA-seq datasets before 

and after normalization, respectively. Figure 3.7A illustrates the raw, unnormalized 

transcript counts, highlighting variability across samples.  

In contrast, Figure 3.7B demonstrates the effect of DEseq2 normalization, resulting in 

more comparable and standardized expression profiles across all samples, ensuring the 

reliability of downstream analyses.  

However, differential gene expression (DGE) analysis failed to identify RAP1GAP2 as 

significant in LFC values. As shown in Figure 3.7C, RAP1GAP2 resides within the "not 

significant" region of the volcano plot, indicating that it was not differentially expressed 

based on standard thresholds (log2 fold change and FDR-adjusted p-value). 
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4.1 Discussion 

This study employed a deep learning framework to reveal novel molecular patterns and 

latent drivers overlooked by traditional methods, utilizing transcriptome data from 

oropharyngeal cancer (OC).  We successfully reduced the data to 50 low-dimensional, 

biologically interpretable latent variables by training a variational autoencoder on high-

dimensional gene expression matrices.  By maintaining essential variation among samples, 

these latent traits enabled downstream modeling to reveal functional insights.  A 50-

dimensional embedding yielded the optimal balance between biological richness and 

training error when evaluating the reconstruction quality of the PEM across various latent 

dimensionalities (Figure 3.1).  The model's capacity to delineate the underlying illness 

structure was emphasized by the UMAP display of the acquired embeddings, which 

distinctly segregated the OC subgroups (Figure 3.2). 

Integrated Gradients were employed to quantify the contribution of each gene to each latent 

dimension, thereby enhancing the understanding of the biological relevance of these 

representations. The analysis revealed the presence of high-attribution gene sets that were 

not restricted to individual dimensions but were also enriched for key biological pathways, 

as identified through Gene Ontology and KEGG annotations (Figure 3.4). Several latent 

variables were associated with biological processes such as cell adhesion, immune 

signaling, and extracellular matrix remodeling—mechanisms commonly implicated in 

tumor progression. In many cases, high-contribution genes appeared recurrently across 

multiple latent dimensions, indicating that shared biological programs may be embedded 

within distinct transcriptomic patterns. These results confirmed that the latent space 

captured by the model reflects physiologically meaningful signals and provided 

justification for further examination of genes contributing across dimensions. 

This study aimed to investigate the molecular intricacies of oropharyngeal cancer (OC) via 

a deep learning analytical framework that transcends the limitations of conventional 

differential gene expression techniques. Utilizing a probabilistic embedding model (PEM) 

grounded on a neural network framework, and subsequently applying gene attribution 

through integrated gradients, we identified 50 latent dimensions that encapsulate 

compressed, physiologically significant transcriptome patterns. The latent dimensions were 

enriched for specific gene programs and biological pathways (Figure 3.3, 3.4), uncovering 

concealed aspects of OC biology not addressed by conventional linear methods. 

RAP1GAP2 appeared as a notably consistent and discriminative component among the 
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genes contributing to these latent traits (Figure 3.6). Despite its robust latent-space 

attribution and efficacy as a single-gene classifier (AUPRC ≈ 0.77), RAP1GAP2 was not 

deemed significant in LFC in the differential expression study (Figure 3.7C). The disparity 

between statistical insignificance and biological significance underscores the fundamental 

value of our approach—deep generative models can reveal non-linear molecular 

determinants that traditional methods may overlook. 

Our results align with and contribute to the existing knowledge in the subject.  Researchers 

have long recognized that the Ras-related GTPase Rap1 and its regulators influence the 

adhesion and motility of cancer cells (Zhang et al. 2017).  Active Rap1 signaling has been 

demonstrated to enhance the invasiveness of head and neck malignancies by inducing the 

production of β-catenin and MMP7 (Zhang et al. 2017).  Conversely, the established Rap1 

inactivator Rap1GAP (a paralog of RAP1GAP2) is recognized for its ability to inhibit 

Rap1–ERK signaling and tumor proliferation (Zhang et al. 2006).  Our identification of 

RAP1GAP2 enhances this paradigm while introducing a novel element.  RAP1GAP2 

functions as a pro-invasion factor, whereas Rap1GAP broadly inhibits HNSCC growth 

(Zhang et al. 2006).  Upon examining the entirety of the situation, this seeming 

contradiction becomes comprehensible: Rap1 regulators frequently exert disparate effects 

on various cell types (Zhang et al. 2017).  Research indicates that Rap1GAP often inhibits 

invasion in various malignancies; but, in certain instances, elevated levels of Rap1GAP 

may enhance cellular invasiveness (Zhang et al. 2017).  Our findings indicate that 

oropharyngeal carcinoma exemplifies a scenario in which RAP1GAP2, functioning in a 

specific cellular region, promotes cancer proliferation.  This constitutes a novel discovery, 

as RAP1GAP2 has not been previously examined in oropharyngeal cancer; it was 

essentially an obscured driver identified by our latent-space profiling.  

 We identified additional latent drivers, including PDK3 and FABP4, that corroborate the 

biological validity of our methodology.  PDK3 (pyruvate dehydrogenase kinase 3) is a 

recognized mediator of the Warburg effect and is increased in hypoxic malignancies, 

resulting in metabolic reprogramming and aggressive behavior (Lu et al. 2011).  FABP4 

(fatty acid–binding protein 4) facilitates tumor metastasis and treatment resistance by 

accelerating lipid transport and signaling in cancer cells (Sun and Zhao 2022).  Our model 

appears to have encapsulated significant characteristics of cancer, such as metabolic 

plasticity and microenvironmental adaptation, alongside the Rap1 signaling axis.  The 

presence of PDK3 and FABP4 among our principal latent genes demonstrates this.  The 
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alignment of our data-driven discoveries with established cancer pathways corroborates the 

outcomes of our study.  We have identified a novel driver (RAP1GAP2) and an 

accompanying array of genes implicated in oropharyngeal cancer invasion and 

demonstrated that deep neural profiling can uncover biologically significant targets 

overlooked by conventional techniques. 

 

Figure 4.1: Schematic model illustrates the proposed role of RAP1GAP2 in promoting 

invasion and metastasis in OC. [Figure generated using Adobe Illustrator v27.8.1].  

RAP1GAP2 is a GTPase-activating protein (GAP) for Rap1 (Johansen et al. 2023). It 

changes active GTP-bound Rap1 into an inactive GDP-bound state, which changes how 

cells stick together and send signals. Active Rap1 stabilizes integrins and E-cadherins, 

which helps cells stick together and keeps epithelial cells looking like epithelial cells (Price 

et al. 2004). RAP1GAP2 stops Rap1 from working, which breaks up these stable 

interactions and makes cells lose their ability to stick together. This is necessary for tumor 

cells to start moving and invading. 
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RAP1GAP2 inactivates Rap1, which not only stops adhesion but also stops Rap1 from 

stopping Ras–MAPK/ERK signaling. This makes the ERK pathway more active (Zhang et 

al. 2017). ERK signaling helps cells grow, move, and turn on invasive genes, such as matrix 

metalloproteinases (MMPs). This makes tumors even more aggressive (Mitra et al. 2008). 

RAP1GAP2 also affects how tumors invade by changing how vesicles move around. It 

works with the synaptotagmin-like protein 1 (Slp1) and Rab27 complex to control secretory 

vesicles that come from the Golgi apparatus (Neumüller et al. 2009; Li et al. 2018). This 

interaction leads to the release of enzymes that break down the matrix, like MMP-2 and 

MMP-9, into the extracellular space. This makes it easier for tissues to break down and 

makes them more invasive (Mitra et al. 2008; Beroun et al. 2019). 

So, RAP1GAP2 controls a coordinated, multi-dimensional invasion strategy: it weakens 

cellular adhesion, turns on pro-invasive ERK/MAPK signaling, and boosts Golgi’s ability 

to secrete proteases (Guo et al. 2020). This integrated mechanism shows how RAP1GAP2 

can help metastasis even though it acts as a Rap1 inhibitor. Future experiments can test 

whether changing the expression of RAP1GAP2 affects the strength of cell adhesion, the 

levels of ERK activation, and the release of invasive factors. This would confirm its many 

roles in the progression of oropharyngeal carcinoma. Notably, this latent driver effect of 

RAP1GAP2 is captured by our model despite its lack of prominence in linear analysis, 

indicating that its contribution, while subtle at the expression level, is indeed biologically 

significant. Overall, the identification of RAP1GAP2 through latent-space analysis—

supported by attribution, classifier performance, and mechanistic plausibility—highlights 

both the biological relevance of this gene and the power of our approach to reveal novel 

drivers in oropharyngeal carcinoma. 

4.2 Limitations of the Study 

Based on integrative analyses of transcriptomic data, our study identifies RAP1GAP2 as a 

promising computationally predicted driver gene in oropharyngeal carcinoma (OC). To 

preserve a fair interpretation, a few restrictions must be noted.  

First off, we didn't carry out functional tests to confirm RAP1GAP2's involvement in 

cellular functions like invasion and metastasis. Therefore, our results are still correlative, 

and there is no proof that RAP1GAP2 causes tumor behavior. Second, even with batch 

effect correction and gene harmonization, heterogeneity is introduced because we used 

retrospective integration of several public datasets from various platforms and clinical 
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subgroups. Variations in tumor subsite, treatment history, and HPV status could affect the 

latent features that are extracted. Third, some candidate genes (such as RAP1GAP2) 

showed only slight expression changes and might contribute to false positives because our 

machine learning pipeline gave predictive power precedence over statistical significance. 

Although this risk was reduced by cross-validation, biological significance still needs to be 

ascertained through experimentation. Furthermore, we were unable to assess the prognostic 

significance of the identified drivers due to the restricted availability of comprehensive 

clinical endpoints, such as survival and metastasis data. Lastly, we only looked at the 

mRNA level, leaving out other regulatory mechanisms that could have a significant impact 

on RAP1GAP2's function, like mutations, epigenetic changes, and post-translational 

events. All of these drawbacks highlight the necessity of additional research that includes 

multi-omic integration and experimental validation in order to completely clarify the 

biological and therapeutic significance of our findings. 

4.3 Future Directions 

Our results provide several avenues for additional research to confirm and broaden the 

biological significance of RAP1GAP2 in oropharyngeal carcinoma (OC). First and 

foremost, functional validation is essential. RAP1GAP2's function would be directly tested 

by knocking down or overexpressing it in OC cell lines and evaluating cell invasion, Rap1-

GTP activity, and downstream signaling (such as ERK/MAPK and MMP secretion). Its 

pro-metastatic role may be further supported by in vivo models. RAP1GAP2's value as a 

biomarker may be defined clinically by assessing its expression in larger patient cohorts or 

tissue arrays, which may show associations with tumor stage, metastasis, HPV status, or 

prognosis. 

From a therapeutic standpoint, RAP1GAP2's downstream pathways, like MAPK signaling 

or Rab27-mediated secretion, provide actionable targets, even though directly targeting it 

may be challenging. Inhibitors of these effectors in RAP1GAP2-high models may be 

investigated in future research. To find cross-layer or context-specific drivers, our deep 

profiling framework can be methodologically extended to other cancers or combined with 

proteomic and epigenetic data. New patterns may be found by applying the pipeline to 

datasets related to head and neck cancer that are HPV-stratified. 

Lastly, more research is necessary to fully understand the network of interactions between 

latent drivers such as RAP1GAP2, PDK3, and FABP4. Studies on gene perturbation and 
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systems biology may shed light on whether these genes are linked by common regulators 

(like hypoxia) and provide combinatorial intervention points. Collectively, these avenues 

will enhance our comprehension of the function of RAP1GAP2 and facilitate the realization 

of our computational approach's translational potential.
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5. Conclusion 

In summary, this study demonstrates that new cancer-causing factors can be identified by 

combining deep learning with high-dimensional transcriptome data. We discovered that 

RAP1GAP2, a gene that is rarely observed to exhibit differential expression, might play a 

secret role in regulating the invasion of other tissues by oropharyngeal cancer. This new 

knowledge links biological mechanisms to data-driven modeling. It implies that these 

cancers become more aggressive due to dysregulation of Rap1 signaling (via RAP1GAP2), 

as well as modifications in metabolism and secretion. Our discussion demonstrates how 

this finding aligns with our current understanding of cancer pathways and provides a fresh 

perspective on and method for testing metastasis. We are one step closer to improved 

prognostic tools and customized treatments for oral cancers now that RAP1GAP2 is 

recognized as a molecular driver (Zhang et al. 2006). Ultimately, the study's methodology 

and findings highlight the significance of looking beyond conventional research to 

comprehend the intricate genetic elements influencing cancer behavior. This makes it 

possible to conduct cancer genomics research using more comprehensive and innovative 

methods.
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-

1.8205604074176

376 

0.0 0.0682293846797

823 

0.64 72/159 32.36

% 

3 

Taste 

transduction 

-

0.2244361798488

704 

-

1.5172067052040

372 

0.0256410256410

256 

0.1659770744115

658 

1.0 14/32 19.96

% 

3 

Ribosome -

0.2232951808963

537 

-

2.8364443956286

745 

0.0 0.0 0.0 79/112 47.23

% 

4 

Oxidative 

phosphorylati

on 

-

0.1384100937509

499 

-

1.4848982031800

35 

0.025 0.3228428314904

074 

0.99 72/86 69.16

% 

4 

Taste 

transduction 

-

0.1599142914597

349 

-

1.1002297033883

486 

0.4193548387096

774 

0.6523335661482

501 

1.0 27/32 67.63

% 

4 

Thermogenes

is 

0.0627232772891

256 

0.8261903765388

551 

0.7179487179487

18 

0.8583973003841

902 

1.0 139/15

9 

82.01

% 

4 
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Epstein-Barr 

virus 

infection 

0.0475756092253

786 

0.6652826145585

135 

0.8552631578947

368 

0.9510038374797

59 

1.0 101/17

9 

53.24

% 

4 

Epstein-Barr 

virus 

infection 

-0.2321369172794 -

3.8752412064043

895 

0.0 0.0 0.0 76/179 18.53

% 

5 

Ribosome -

0.2331264509898

629 

-

3.0373310393102

21 

0.0 0.0 0.0 87/112 53.96

% 

5 

Oxidative 

phosphorylati

on 

-

0.2113046485189

271 

-

2.5688251815532

457 

0.0 0.0008765821089

591 

0.01 68/86 57.49

% 

5 

Thermogenes

is 

0.0767866793683

777 

1.1101762451219

783 

0.3225806451612

903 

1.0 1.0 136/15

9 

78.48

% 

5 

Taste 

transduction 

-

0.1278100605290

263 

-

0.8108845295541

842 

0.6666666666666

666 

0.8161653728339

712 

1.0 21/32 51.73

% 

5 

Ribosome -

0.3293229152882

386 

-

4.4509337108677

19 

0.0 0.0 0.0 68/112 27.16

% 

6 

Oxidative 

phosphorylati

on 

-

0.2803922514121

083 

-

2.9523157014033

363 

0.0 0.0 0.0 70/86 52.93

% 

6 

Epstein-Barr 

virus 

infection 

-

0.1612168197723

371 

-

2.8399022496034

9 

0.0 0.0 0.0 80/179 27.60

% 

6 

Thermogenes

is 

-

0.1045309528713

468 

-

1.6119871628753

508 

0.0526315789473

684 

0.1086496401862

565 

0.98 102/15

9 

52.93

% 

6 

Taste 

transduction 

-

0.0803663969469

782 

-

0.5944365699407

909 

0.9473684210526

316 

0.9504021447721

18 

1.0 22/32 59.83

% 

6 

Epstein-Barr 

virus 

infection 

-

0.1065109835343

221 

-

1.7441063627334

84 

0.0 0.1176882575158

902 

0.78 49/179 15.52

% 

7 

Ribosome 0.1120774229219

907 

1.2798902470341

21 

0.1076923076923

077 

0.7245521177194

651 

1.0 58/112 42.30

% 

7 

Oxidative 

phosphorylati

on 

0.1081615732831

24 

1.1195845010506

99 

0.3442622950819

672 

0.9349297823532

704 

1.0 75/86 77.11

% 

7 

Thermogenes

is 

0.0715029801756

083 

1.0268194922167

353 

0.4637681159420

29 

0.9815923459967

548 

1.0 129/15

9 

75.05

% 

7 

Taste 

transduction 

0.1249958881658

193 

0.8067070959874

992 

0.6229508196721

312 

1.0 1.0 23/32 61.00

% 

7 

Thermogenes

is 

0.1367508982822

331 

1.9891285890048

445 

0.0 0.1958251871161

404 

0.47 88/159 42.83

% 

8 

Ribosome 0.1454806205398

361 

1.7462592473255

552 

0.0408163265306

122 

0.3844675970986

771 

0.87 84/112 61.29

% 

8 

Oxidative 

phosphorylati

on 

0.1309589399054

042 

1.3715003663606

282 

0.0666666666666

666 

0.7863250756787

104 

1.0 31/86 24.00

% 

8 

Epstein-Barr 

virus 

infection 

-

0.0775275389761

539 

-

1.2408344861416

116 

0.1379310344827

586 

0.4750103126804

719 

1.0 105/17

9 

50.05

% 

8 

Taste 

transduction 

-

0.1302957666471

551 

-

0.8763585423530

01 

0.5769230769230

769 

0.8278352697259

158 

1.0 12/32 23.35

% 

8 

Thermogenes

is 

-

0.1337794037804

547 

-

2.1003029810119

35 

0.0 0.0240763092961

898 

0.22 50/159 16.67

% 

9 

Oxidative 

phosphorylati

on 

-

0.1564861632838

065 

-

1.6899188229068

458 

0.0 0.1199516123863

745 

0.88 29/86 16.56

% 

9 

Epstein-Barr 

virus 

infection 

-

0.0805443311691

613 

-

1.3345202650671

202 

0.125 0.3780101242756

428 

1.0 74/179 31.81

% 

9 

Ribosome -

0.0944119478879

425 

-

1.2113882241551

532 

0.2222222222222

222 

0.5218758215459

836 

1.0 24/112 10.81

% 

9 

Taste 

transduction 

0.1425123191907

56 

0.8988740228825

484 

0.5555555555555

556 

1.0 1.0 8/32 12.37

% 

9 

Ribosome -

0.1971230410161

868 

-

2.6788469240337

296 

0.0 0.0025584472871

636 

0.01 72/112 43.60

% 

10 

Epstein-Barr 

virus 

infection 

-

0.1636372192150

541 

-

2.5400057344093

52 

0.0 0.0031980591089

545 

0.02 85/179 29.82

% 

10 

Oxidative 

phosphorylati

on 

0.1500924419982

399 

1.5510957038556

674 

0.0307692307692

307 

0.3611661477497

877 

0.99 52/86 46.85

% 

10 

Thermogenes

is 

0.1123031774550

938 

1.5077141535503

211 

0.0882352941176

47 

0.4161262137117

119 

0.99 90/159 46.85

% 

10 

Taste 

transduction 

0.1335782743774

241 

0.8638481365202

263 

0.65625 0.9752898173595

196 

1.0 21/32 53.91

% 

10 
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Epstein-Barr 

virus 

infection 

-

0.1548800515752

707 

-

2.4310472892938

32 

0.0 0.0014575470250

698 

0.01 82/179 28.95

% 

11 

Oxidative 

phosphorylati

on 

0.1182173254761

076 

1.1944193154577

427 

0.2622950819672

131 

0.6175221922037

823 

1.0 66/86 65.98

% 

11 

Thermogenes

is 

0.0840036749263

786 

1.1186199550959

44 

0.28125 0.6860132448708

288 

1.0 95/159 52.77

% 

11 

Ribosome -

0.0782791132880

562 

-

1.0479330673375

782 

0.3823529411764

705 

0.5760692258123

907 

1.0 71/112 54.18

% 

11 

Taste 

transduction 

-

0.1423537900733

46 

-

0.9466568114068

772 

0.4883720930232

558 

0.7009968306571

455 

1.0 12/32 21.73

% 

11 

Ribosome -

0.1590080895545

469 

-

2.1120351349357

41 

0.0 0.0280182897168

985 

0.25 82/112 56.27

% 

12 

Oxidative 

phosphorylati

on 

-

0.1324742005360

538 

-

1.4618884159029

404 

0.0810810810810

81 

0.2967726739750

436 

1.0 61/86 56.39

% 

12 

Epstein-Barr 

virus 

infection 

-

0.0828798991794

913 

-

1.3064769028044

512 

0.1304347826086

956 

0.3912372091377

831 

1.0 61/179 24.35

% 

12 

Taste 

transduction 

-

0.1640753539772

809 

-

1.2020766986467

593 

0.2285714285714

285 

0.4926908484063

849 

1.0 9/32 10.31

% 

12 

Thermogenes

is 

0.0430498109286

673 

0.6098984184263

628 

0.9350649350649

35 

1.0 1.0 138/15

9 

83.46

% 

12 

Thermogenes

is 

0.1106799758428

105 

1.5528444508611

32 

0.1212121212121

212 

0.5010353563167

75 

1.0 84/159 43.54

% 

13 

Taste 

transduction 

0.1898271430862

881 

1.2384391552528

35 

0.2 0.8120975144105

445 

1.0 8/32 7.70% 13 

Ribosome 0.1010080676659

86 

1.1588001452808

16 

0.2816901408450

704 

0.7224988615683

561 

1.0 57/112 42.36

% 

13 

Oxidative 

phosphorylati

on 

0.0893802743756

362 

0.9178164713944

112 

0.5151515151515

151 

0.7740193224552

736 

1.0 75/86 79.11

% 

13 

Epstein-Barr 

virus 

infection 

-

0.0369440849574

122 

-

0.5773223972275

305 

1.0 0.9895624758934

112 

1.0 162/17

9 

86.23

% 

13 

Ribosome -

0.2499602236106

113 

-

3.4028110229668

32 

0.0 0.0 0.0 70/112 36.31

% 

14 

Oxidative 

phosphorylati

on 

-

0.2533110757351

272 

-

2.8823733635911

024 

0.0 0.0 0.0 58/86 40.98

% 

14 

Epstein-Barr 

virus 

infection 

-

0.1403322253608

299 

-

2.5636151130605

28 

0.0 0.0026311111111

111 

0.01 89/179 34.09

% 

14 

Thermogenes

is 

-

0.0782485007267

294 

-

1.1257550331930

222 

0.2941176470588

235 

0.5246178861788

618 

1.0 110/15

9 

60.17

% 

14 

Taste 

transduction 

0.1120801633981

848 

0.7121301279549

598 

0.8653846153846

154 

1.0 1.0 29/32 79.91

% 

14 

Epstein-Barr 

virus 

infection 

-

0.1564731165548

349 

-

2.6231667792912

323 

0.0 0.0 0.0 58/179 15.80

% 

15 

Oxidative 

phosphorylati

on 

-

0.1427779365221

995 

-

1.5459902681911

917 

0.0714285714285

714 

0.1606630509590

157 

1.0 45/86 37.13

% 

15 

Ribosome -

0.0835052583452

637 

-

1.0457258246958

143 

0.4473684210526

316 

0.6350407605087

761 

1.0 64/112 47.89

% 

15 

Thermogenes

is 

0.0685810193717

143 

0.9241792850269

684 

0.609375 0.9146829405107

706 

1.0 86/159 48.40

% 

15 

Taste 

transduction 

-

0.1089751365711

126 

-

0.8046743421424

567 

0.7021276595744

681 

0.8587691414210

2 

1.0 22/32 56.79

% 

15 

Oxidative 

phosphorylati

on 

-

0.1934690155536

926 

-

2.2579171436828

2 

0.0 0.0135284910529

21 

0.1 70/86 61.20

% 

16 

Thermogenes

is 

-

0.1199857130176

65 

-

2.0590114667603

91 

0.0 0.0243252675663

099 

0.25 118/15

9 

61.23

% 

16 

Ribosome -

0.0986916187640

376 

-

1.2343055799625

748 

0.2413793103448

276 

0.5549282964592

411 

1.0 93/112 72.43

% 

16 

Epstein-Barr 

virus 

infection 

-

0.0735439406826

843 

-

1.2010141513757

822 

0.25 0.5515253606328

525 

1.0 121/17

9 

59.04

% 

16 

Taste 

transduction 

-

0.1417973572809

813 

-

0.9239386376720

244 

0.6538461538461

539 

0.8495865697820

095 

1.0 15/32 31.04

% 

16 
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Ribosome -

0.1429843414461

468 

-

1.9351322203883

43 

0.0 0.0402945619335

347 

0.44 86/112 61.80

% 

17 

Epstein-Barr 

virus 

infection 

-

0.0989803694223

771 

-

1.6377537736470

795 

0.0 0.1405948784347

576 

0.95 86/179 37.03

% 

17 

Oxidative 

phosphorylati

on 

-

0.1321516800386

444 

-

1.5503137660883

377 

0.0294117647058

823 

0.1873047842836

362 

0.98 47/86 40.21

% 

17 

Thermogenes

is 

-

0.0495010447489

337 

-

0.7532720687120

83 

0.8709677419354

839 

0.9325568175837

132 

1.0 80/159 44.25

% 

17 

Taste 

transduction 

0.0837504809450

444 

0.5391166734889

357 

1.0 0.9862752920198

86 

1.0 18/32 49.33

% 

17 

Ribosome -

0.2300643695538

789 

-

3.0326377472614

51 

0.0 0.0 0.0 67/112 36.08

% 

18 

Oxidative 

phosphorylati

on 

-

0.2258420027873

637 

-

2.4269696641982

08 

0.0 0.0030002293168

904 

0.03 61/86 47.80

% 

18 

Epstein-Barr 

virus 

infection 

-

0.1634367130823

65 

-

2.3127360201179

96 

0.0 0.0060671303963

784 

0.07 66/179 19.74

% 

18 

Thermogenes

is 

-

0.0540860555409

017 

-

0.8808549381934

389 

0.6428571428571

429 

0.7158308325876

414 

1.0 137/15

9 

80.28

% 

18 

Taste 

transduction 

0.0903422763299

656 

0.5715602775591

783 

0.9423076923076

924 

0.9854396948327

132 

1.0 12/32 29.38

% 

18 

Ribosome -

0.2865315189205

287 

-

3.5741418374315

392 

0.0 0.0 0.0 80/112 41.74

% 

19 

Oxidative 

phosphorylati

on 

-

0.2284104905830

11 

-

2.4631593708013

453 

0.0 0.0 0.0 40/86 22.24

% 

19 

Epstein-Barr 

virus 

infection 

-

0.1084580718550

667 

-

1.9171496093342

697 

0.0 0.0473985890652

557 

0.4 77/179 30.61

% 

19 

Thermogenes

is 

-

0.0895152851569

006 

-

1.3276471046020

3 

0.1363636363636

363 

0.4203445605884

63 

1.0 132/15

9 

73.22

% 

19 

Taste 

transduction 

0.1926586094746

618 

1.1079070707887

402 

0.3859649122807

017 

0.8063496076781

06 

1.0 30/32 74.82

% 

19 

Epstein-Barr 

virus 

infection 

-

0.0853369011310

599 

-

1.5479124740309

584 

0.0303030303030

303 

0.2999792957090

357 

0.97 46/179 15.94

% 

20 

Ribosome -

0.1077871147797

501 

-

1.3732178053318

371 

0.0666666666666

666 

0.3707169657065

273 

1.0 59/112 40.58

% 

20 

Taste 

transduction 

-

0.1473393589157

44 

-

1.0153596695405

562 

0.4722222222222

222 

0.6979608190464

14 

1.0 12/32 21.09

% 

20 

Thermogenes

is 

0.0542222308163

235 

0.7571389446423

754 

0.7866666666666

666 

0.9763971347870

776 

1.0 150/15

9 

89.39

% 

20 

Oxidative 

phosphorylati

on 

0.0704483502934

994 

0.7206262365493

948 

0.8235294117647

058 

0.9541908068839

632 

1.0 84/86 90.89

% 

20 

Ribosome 0.2275438043622

52 

2.5616655165777

05 

0.0 0.0061374558508

482 

0.01 72/112 42.71

% 

21 

Epstein-Barr 

virus 

infection 

-

0.1441302848400

509 

-

2.3249466046355

44 

0.0 0.0037351456909

816 

0.05 112/17

9 

47.05

% 

21 

Taste 

transduction 

0.2050893693918

116 

1.3499798123440

814 

0.1639344262295

081 

1.0 1.0 31/32 76.55

% 

21 

Oxidative 

phosphorylati

on 

-

0.1140775226843

5 

-

1.2261204071398

637 

0.2258064516129

032 

0.3921902975530

735 

1.0 28/86 20.10

% 

21 

Thermogenes

is 

-

0.0423312481418

022 

-

0.7048522598483

786 

0.9354838709677

42 

0.9195708976744

42 

1.0 152/15

9 

91.18

% 

21 

Epstein-Barr 

virus 

infection 

-

0.1040991072613

12 

-

1.5395196576693

624 

0.08 0.1372225279765

18 

0.99 38/179 9.71% 22 

Ribosome -

0.1188469970281

153 

-

1.5179883663741

862 

0.0666666666666

666 

0.1478504771584

324 

0.99 32/112 15.52

% 

22 

Oxidative 

phosphorylati

on 

-

0.1063207806531

286 

-

1.2234510409142

016 

0.1666666666666

666 

0.3499987708812

442 

1.0 64/86 62.78

% 

22 

Taste 

transduction 

-

0.1162346220625

998 

-

0.8115098576982

108 

0.6571428571428

571 

0.7833040746558

256 

1.0 17/32 39.94

% 

22 

Thermogenes

is 

0.0308342620424

767 

0.4293938133054

199 

1.0 0.9970842273202

398 

1.0 29/159 16.15

% 

22 
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Epstein-Barr 

virus 

infection 

-

0.1490222125794

351 

-

2.4517198895361

614 

0.0 0.0081440791451

449 

0.04 94/179 36.77

% 

23 

Oxidative 

phosphorylati

on 

-

0.1900501123715

608 

-

1.9093101811763

79 

0.0 0.0470320570632

122 

0.42 71/86 63.12

% 

23 

Taste 

transduction 

-

0.1815968266524

949 

-

1.3009534103446

785 

0.1428571428571

428 

0.3487975389103

511 

1.0 10/32 12.03

% 

23 

Thermogenes

is 

-

0.0755688546724

218 

-

1.0832749743737

218 

0.3030303030303

03 

0.5208393115793

502 

1.0 61/159 29.92

% 

23 

Ribosome 0.0520079995085

884 

0.6413917946548

4 

0.8679245283018

868 

0.9554250706830

07 

1.0 53/112 43.18

% 

23 

Oxidative 

phosphorylati

on 

-

0.2140088342006

968 

-

2.5581159053371

945 

0.0 0.0010142228443

316 

0.01 46/86 31.19

% 

24 

Epstein-Barr 

virus 

infection 

-

0.1580411043735

501 

-

2.5502780822096

85 

0.0 0.0009466079880

428 

0.01 60/179 16.72

% 

24 

Taste 

transduction 

-

0.1907365919825

491 

-

1.2939274158627

64 

0.2156862745098

039 

0.3142951241198

439 

1.0 17/32 32.98

% 

24 

Ribosome -

0.0860341248910

368 

-

1.1004974235817

673 

0.3103448275862

069 

0.4815245370754

795 

1.0 106/11

2 

85.90

% 

24 

Thermogenes

is 

-

0.0711413956891

996 

-

1.0751266704488

225 

0.3333333333333

333 

0.5077702335860

602 

1.0 117/15

9 

65.75

% 

24 

Thermogenes

is 

0.1659622741611

206 

2.2467535634369

544 

0.0 0.0411352253756

26 

0.17 116/15

9 

57.68

% 

25 

Oxidative 

phosphorylati

on 

0.1888723510224

07 

2.1665786495591

65 

0.0 0.0467445742904

841 

0.25 40/86 29.28

% 

25 

Ribosome -

0.1565338198474

687 

-

1.8607252802865

64 

0.0285714285714

285 

0.1290420066485

343 

0.64 69/112 44.77

% 

25 

Taste 

transduction 

-

0.1665415002572

56 

-

1.2417514094893

585 

0.1489361702127

659 

0.5870489573889

394 

1.0 11/32 16.31

% 

25 

Epstein-Barr 

virus 

infection 

-

0.0471492858169

478 

-

0.7532115728269

66 

0.8888888888888

888 

0.9572471118372

036 

1.0 148/17

9 

77.11

% 

25 

Epstein-Barr 

virus 

infection 

-

0.1120298340814

006 

-

2.0146072424615

937 

0.0 0.0252861368312

757 

0.23 103/17

9 

44.77

% 

26 

Oxidative 

phosphorylati

on 

-

0.1609719325626

107 

-

1.7046833340244

654 

0.03125 0.1078765707671

957 

0.75 44/86 33.41

% 

26 

Ribosome -

0.1061645417419

538 

-

1.3642996693988

605 

0.15 0.3313058609825

103 

1.0 73/112 53.04

% 

26 

Taste 

transduction 

0.1592193386692

686 

1.0458250483076

112 

0.3461538461538

461 

0.9616015093405

912 

1.0 10/32 17.21

% 

26 

Thermogenes

is 

0.0563497911713

277 

0.7360008639741

472 

0.8260869565217

391 

0.9576472894762

056 

1.0 90/159 52.59

% 

26 

Ribosome -

0.1964814337453

577 

-

2.4963696199418

77 

0.0 0.0 0.0 89/112 58.81

% 

27 

Epstein-Barr 

virus 

infection 

-

0.1227396672517

917 

-

2.3773259664604

32 

0.0 0.0035433331129

767 

0.02 102/17

9 

42.99

% 

27 

Taste 

transduction 

-

0.1162051089342

08 

-

0.8434816132145

562 

0.6415094339622

641 

0.7677272654741

58 

1.0 11/32 21.36

% 

27 

Thermogenes

is 

0.0549077516421

173 

0.7168894036733

295 

0.8412698412698

413 

0.9068752813784

474 

1.0 62/159 35.14

% 

27 

Oxidative 

phosphorylati

on 

-

0.0615741373995

872 

-

0.6477804376991

224 

0.9117647058823

528 

0.9522364394893

263 

1.0 33/86 30.82

% 

27 

Epstein-Barr 

virus 

infection 

-

0.1655189474382

541 

-

2.8709582269174

52 

0.0 0.0 0.0 77/179 25.63

% 

28 

Ribosome -

0.2069016676747

544 

-

2.8002326767081

95 

0.0 0.0 0.0 80/112 50.28

% 

28 

Thermogenes

is 

0.1313157689829

146 

1.8849418718563

5 

0.0 0.4625279304305

816 

0.67 110/15

9 

56.99

% 

28 

Taste 

transduction 

-

0.1471600495573

211 

-

0.9981835364480

396 

0.3913043478260

87 

0.6522519625967

902 

1.0 30/32 78.87

% 

28 

Oxidative 

phosphorylati

on 

-

0.0719395400172

545 

-

0.7948374235753

343 

0.7 0.8582578190109

95 

1.0 85/86 91.65

% 

28 
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Ribosome -

0.3640114664957

908 

-

4.4477333671435

93 

0.0 0.0 0.0 77/112 31.66

% 

29 

Oxidative 

phosphorylati

on 

-

0.2743933145830

459 

-

3.2674971897351

76 

0.0 0.0 0.0 57/86 37.99

% 

29 

Thermogenes

is 

-

0.1322448508758

917 

-

2.0850669247592

69 

0.0227272727272

727 

0.0196933560477

001 

0.24 96/159 46.08

% 

29 

Epstein-Barr 

virus 

infection 

0.0919162478505

591 

1.2637288151803

443 

0.1571428571428

571 

0.5393307349274

904 

1.0 58/179 24.48

% 

29 

Taste 

transduction 

-

0.1409379951415

683 

-

0.9495072224306

784 

0.6 0.9666477380276

356 

1.0 15/32 31.53

% 

29 

Oxidative 

phosphorylati

on 

-

0.2601385384155

186 

-

3.0084033219089

17 

0.0 0.0 0.0 69/86 53.33

% 

30 

Ribosome -

0.2225102822614

033 

-

2.9368797355344

225 

0.0 0.0 0.0 73/112 41.60

% 

30 

Thermogenes

is 

-

0.1091719810812

835 

-

1.7218181735948

006 

0.0 0.0964372318597

276 

0.76 114/15

9 

59.59

% 

30 

Taste 

transduction 

-

0.1681589880592

587 

-

1.1892261384806

169 

0.2325581395348

837 

0.4385299727053

663 

1.0 26/32 63.47

% 

30 

Epstein-Barr 

virus 

infection 

0.0557083601545

044 

0.8433363336922

206 

0.625 0.7871948695747

323 

1.0 25/179 9.59% 30 

Ribosome -

0.3088603817864

165 

-

4.5095090913599

805 

0.0 0.0 0.0 67/112 27.76

% 

31 

Oxidative 

phosphorylati

on 

-

0.2280577290437

473 

-

2.6330109611111

74 

0.0 0.0067149673087

117 

0.03 46/86 29.19

% 

31 

Thermogenes

is 

-

0.1089243720432

984 

-

1.6118959971372

937 

0.0357142857142

857 

0.1765077121147

098 

0.94 58/159 24.24

% 

31 

Taste 

transduction 

0.1692150451803

977 

1.1212167825319

377 

0.2666666666666

666 

1.0 1.0 8/32 9.57% 31 

Epstein-Barr 

virus 

infection 

-

0.0540938598818

739 

-

0.8876800724429

279 

0.5625 0.8275281530626

998 

1.0 108/17

9 

53.43

% 

31 

Ribosome -

0.2578530355840

409 

-

3.3293167450572

5 

0.0 0.0 0.0 51/112 18.35

% 

32 

Oxidative 

phosphorylati

on 

-

0.3010482068914

579 

-

3.2513049419491

33 

0.0 0.0 0.0 55/86 32.65

% 

32 

Thermogenes

is 

-

0.1950881150434

57 

-

3.1460939081379

293 

0.0 0.0 0.0 84/159 31.91

% 

32 

Taste 

transduction 

-

0.1598448791793

256 

-

1.1499614807625

744 

0.2391304347826

087 

0.5808088388094

853 

1.0 9/32 10.34

% 

32 

Epstein-Barr 

virus 

infection 

0.0430492200213

103 

0.6365137133053

301 

0.8985507246376

812 

0.9827247306416

328 

1.0 116/17

9 

61.99

% 

32 

Ribosome -

0.3630708010063

278 

-

4.7397826652520

94 

0.0 0.0 0.0 85/112 39.11

% 

33 

Oxidative 

phosphorylati

on 

-

0.3017187042155

527 

-

3.1660462403331

04 

0.0 0.0 0.0 70/86 50.74

% 

33 

Thermogenes

is 

-

0.1383763649312

712 

-

2.0307768585270

07 

0.0 0.0216223562388

516 

0.33 107/15

9 

52.73

% 

33 

Epstein-Barr 

virus 

infection 

-

0.1147388570848

083 

-

1.7310233429711

71 

0.0344827586206

896 

0.0902363833497

384 

0.8 68/179 25.48

% 

33 

Taste 

transduction 

-

0.2120107719433

776 

-

1.4890153730613

67 

0.0980392156862

745 

0.2118406523401

002 

0.99 14/32 21.31

% 

33 

Oxidative 

phosphorylati

on 

-

0.2545196538658

869 

-

2.8534254575539

88 

0.0 0.0 0.0 59/86 41.96

% 

34 

Epstein-Barr 

virus 

infection 

-

0.1406276819473

865 

-

2.1993808397548

52 

0.0 0.0069618490671

122 

0.08 101/17

9 

40.64

% 

34 

Ribosome -

0.1404734864995

973 

-

1.6958172669378

744 

0.0 0.0890740364424

574 

0.86 55/112 33.62

% 

34 
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Taste 

transduction 

-

0.1327015686283

943 

-

0.9523420525198

376 

0.4772727272727

273 

0.6694432158828

444 

1.0 8/32 10.41

% 

34 

Thermogenes

is 

-

0.0642275325875

987 

-

0.9438060795186

816 

0.5121951219512

195 

0.6694621168305

378 

1.0 46/159 21.19

% 

34 

Epstein-Barr 

virus 

infection 

-

0.1337794321853

186 

-

2.1911135547340

184 

0.0 0.0103028113374

597 

0.14 66/179 22.07

% 

35 

Thermogenes

is 

0.1169191327605

175 

1.5391984192601

724 

0.0422535211267

605 

0.8218183832899

328 

1.0 88/159 45.25

% 

35 

Oxidative 

phosphorylati

on 

0.0975026009723

607 

1.0324645616114

798 

0.4 0.9667967358698

148 

1.0 53/86 53.19

% 

35 

Taste 

transduction 

-

0.1216536857868

528 

-

0.8727845560307

057 

0.5957446808510

638 

0.7538368738593

555 

1.0 19/32 45.99

% 

35 

Ribosome -

0.0485747667164

141 

-

0.5931017707095

675 

0.9393939393939

394 

0.9753651291582

288 

1.0 84/112 69.03

% 

35 

Oxidative 

phosphorylati

on 

-

0.2263274299523

434 

-

2.7372318837923

41 

0.0 0.0 0.0 64/86 50.58

% 

36 

Thermogenes

is 

-

0.1201911536898

513 

-

1.9299521792350

136 

0.0 0.0538910872432

636 

0.44 93/159 44.78

% 

36 

Taste 

transduction 

0.2117787697472

15 

1.3365944361544

937 

0.1730769230769

23 

0.5778762826788

498 

1.0 24/32 55.02

% 

36 

Ribosome -

0.1034471847868

074 

-

1.2945477592320

158 

0.125 0.3413102192073

362 

1.0 49/112 31.63

% 

36 

Epstein-Barr 

virus 

infection 

-

0.0576208425867

244 

-

0.9646737080773

496 

0.5 0.7001758683499

78 

1.0 43/179 16.70

% 

36 

Ribosome -

0.2780402190998

905 

-

3.7626702164566

943 

0.0 0.0 0.0 80/112 42.60

% 

37 

Oxidative 

phosphorylati

on 

-

0.1833048188200

864 

-

2.0503336167479

16 

0.0 0.0303655660377

358 

0.28 76/86 69.50

% 

37 

Epstein-Barr 

virus 

infection 

-

0.0958088948657

161 

-

1.6294390632719

38 

0.0 0.1462421909509

686 

0.86 102/17

9 

46.10

% 

37 

Thermogenes

is 

-

0.0836067027722

523 

-

1.3190298606653

903 

0.1666666666666

666 

0.3955309627479

438 

1.0 152/15

9 

87.09

% 

37 

Taste 

transduction 

0.1273989683571

168 

0.8722501590968

771 

0.5762711864406

78 

0.7863051117965

717 

1.0 6/32 7.30% 37 

Thermogenes

is 

0.1543315294185

555 

2.1000213151528

71 

0.0149253731343

283 

0.2416159380188

157 

0.42 97/159 47.08

% 

38 

Ribosome -

0.1395500689620

349 

-

2.0428100405841

603 

0.0 0.0313967673071

058 

0.19 88/112 63.77

% 

38 

Epstein-Barr 

virus 

infection 

-

0.0968682231117

353 

-

1.5861196199728

786 

0.0 0.1635434045530

38 

0.91 48/179 15.98

% 

38 

Oxidative 

phosphorylati

on 

0.1404503366589

868 

1.4065092972713

316 

0.1166666666666

666 

0.7813613724405

091 

1.0 51/86 46.79

% 

38 

Taste 

transduction 

-

0.1333043674603

921 

-

0.9338256527433

02 

0.5853658536585

366 

0.7637583520474

647 

1.0 23/32 57.40

% 

38 

Epstein-Barr 

virus 

infection 

-

0.1208544640341

385 

-

1.8792193758859

483 

0.0 0.0779192913084

126 

0.6 71/179 26.75

% 

39 

Ribosome -

0.1214087761786

404 

-

1.6738897666231

272 

0.0277777777777

777 

0.1330911766058

209 

0.86 64/112 44.26

% 

39 

Oxidative 

phosphorylati

on 

-

0.1337418025070

802 

-

1.4844452740123

826 

0.0909090909090

909 

0.2296105568072

095 

0.98 66/86 62.70

% 

39 

Taste 

transduction 

-

0.1912523199587

957 

-

1.3816456726391

608 

0.1333333333333

333 

0.3064158024799

114 

1.0 13/32 20.46

% 

39 

Thermogenes

is 

0.0383834139505

656 

0.5746257618987

081 

0.9696969696969

696 

1.0 1.0 140/15

9 

84.73

% 

39 

Ribosome -

0.1330614426196

696 

-

1.6552021458471

902 

0.0476190476190

476 

0.1990882759126

407 

0.9 96/112 71.95

% 

40 

Taste 

transduction 

-

0.1995615584775

341 

-

1.5323371265715

76 

0.0465116279069

767 

0.2384375715795

661 

1.0 9/32 6.79% 40 
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Oxidative 

phosphorylati

on 

-

0.1128483370623

297 

-

1.2799354987414

728 

0.1707317073170

731 

0.3859904273473

485 

1.0 50/86 45.85

% 

40 

Thermogenes

is 

-

0.0698022490763

07 

-

0.9963950374822

887 

0.4615384615384

615 

0.6727154407149

333 

1.0 47/159 21.68

% 

40 

Epstein-Barr 

virus 

infection 

-

0.0423759172324

384 

-

0.6557109849000

161 

0.9333333333333

332 

0.9560671357686

714 

1.0 36/179 15.15

% 

40 

Oxidative 

phosphorylati

on 

-

0.3178452567996

256 

-

3.2308443138546

794 

0.0 0.0 0.0 60/86 36.90

% 

41 

Ribosome -

0.2398031423342

298 

-

3.2183620427351

154 

0.0 0.0 0.0 62/112 29.85

% 

41 

Epstein-Barr 

virus 

infection 

-

0.0925176446724

106 

-

1.5139748150739

774 

0.0714285714285

714 

0.1867903688977

247 

1.0 94/179 41.80

% 

41 

Thermogenes

is 

-

0.0858185058777

302 

-

1.2891483325508

557 

0.1388888888888

889 

0.3620553104139

39 

1.0 73/159 35.91

% 

41 

Taste 

transduction 

0.1355329698643

851 

0.9167825200406

078 

0.6101694915254

238 

0.8683607535453

032 

1.0 11/32 22.45

% 

41 

Ribosome -

0.1640123151182

866 

-

2.2033014501858

85 

0.0 0.0058554195650

259 

0.03 47/112 24.40

% 

42 

Epstein-Barr 

virus 

infection 

-

0.1240266084660

245 

-

2.0585535228846

64 

0.0 0.0156144521734

026 

0.12 58/179 18.85

% 

42 

Oxidative 

phosphorylati

on 

-

0.1371541527892

488 

-

1.5255224471587

14 

0.0789473684210

526 

0.1642119886902

84 

0.99 31/86 21.18

% 

42 

Thermogenes

is 

0.0720718234332

094 

1.0664691857698

492 

0.4 0.6857369966176

559 

1.0 76/159 41.91

% 

42 

Taste 

transduction 

0.1515671345565

241 

1.0309313938721

68 

0.4230769230769

231 

0.7313310413885

615 

1.0 18/32 42.56

% 

42 

Oxidative 

phosphorylati

on 

-

0.2727001833743

558 

-

3.2400327871522

09 

0.0 0.0 0.0 61/86 42.59

% 

43 

Ribosome -

0.2035206597539

268 

-

2.6583790691907

123 

0.0 0.0 0.0 54/112 26.37

% 

43 

Epstein-Barr 

virus 

infection 

-

0.1166104695400

355 

-

1.9235375611382

84 

0.0 0.0455769077000

986 

0.48 63/179 22.09

% 

43 

Thermogenes

is 

-

0.1254676352054

362 

-

1.8457547420625

61 

0.0 0.0558676937018

577 

0.64 118/15

9 

60.51

% 

43 

Taste 

transduction 

-

0.0841319508329

352 

-

0.5943039962466

512 

0.9310344827586

208 

0.9839238785681

922 

1.0 5/32 6.19% 43 

Oxidative 

phosphorylati

on 

-

0.2321417570446

411 

-

2.6083797429053

66 

0.0 0.0050045703839

122 

0.03 45/86 27.77

% 

44 

Thermogenes

is 

-

0.1553811792791

847 

-

2.4138571901508

17 

0.0 0.0033363802559

414 

0.03 73/159 29.10

% 

44 

Epstein-Barr 

virus 

infection 

-

0.0995353249186

391 

-

1.7774636988555

75 

0.0 0.0973110907982

937 

0.78 65/179 24.97

% 

44 

Ribosome -

0.0827061919968

07 

-

1.1703424936817

148 

0.1891891891891

892 

0.5609355503322

596 

1.0 94/112 74.95

% 

44 

Taste 

transduction 

-

0.1152252573035

39 

-

0.7379242450079

108 

0.8333333333333

334 

0.9559267559120

128 

1.0 18/32 43.30

% 

44 

Epstein-Barr 

virus 

infection 

-

0.1483740711922

618 

-

2.5401627938768

514 

0.0 0.0028021015761

821 

0.01 94/179 36.32

% 

45 

Ribosome -

0.1752683634281

028 

-

2.1107840486152

813 

0.0 0.0196147110332

749 

0.12 104/11

2 

75.04

% 

45 

Thermogenes

is 

-

0.0971470308528

347 

-

1.6584616343711

849 

0.0344827586206

896 

0.1473697865992

086 

0.9 91/159 46.24

% 

45 

Oxidative 

phosphorylati

on 

-

0.1096084072672

24 

-

1.2988032557097

435 
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Appendix IV 

 

Figure Appendix IV: Precision–recall curves for the top 15 latent-space-contributing 

genes. 

Appendix V 

 

Figure Appendix V: Boxplot of gene expression levels for the top latent contributors 

across tumor (1) and control (0) conditions 


