Project Report on

Deep Neural Profiling Reveals RAP1GAP2 as a Latent Regulator of Tumor Invasion in Oropharyngeal Carcinoma

In partial fulfilment of the requirements of the BMB433 for the degree of Bachelor of Science in Biochemistry and Molecular Biology of the Shahjalal University of Science and Technology, Sylhet

Submitted By

Registration No: 2019433077 BSc Session: 2019-2020

Department of Biochemistry and Molecular Biology School of Life Science Shahjalal University of Science and Technology Sylhet-3114, Bangladesh

Date of Submission: July 07, 2025

Acknowledgments

Foremost, I want to express my gratitude to Almighty God for the wisdom, strength, peace of mind, and good health. He bestowed upon me to complete my dissertation.

I place on record my sincere gratitude to my supervisor **Papia Rahman**, Lecturer, Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet-3114, for allowing me the opportunity to enroll in my project under her kind supervision and for her patience, motivation, and immense knowledge. Her guidance helped me throughout the research and writing of this thesis. I could not have imagined having a better advisor and mentor for my project study. I am extremely thankful and indebted to her valuable guidance and encouragement.

Finally, I must express my very profound gratitude to my parents and friends for providing me with unwavering support and endless encouragement during my studies as well as during the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Joy Prokash Debnath

July 07, 2025

To Whom It May Concern

I hereby certify that in accordance with the laws of Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh, the project work entitled "Deep Neural Profiling Reveals RAP1GAP2 as a Latent Regulator of Tumor Invasion in Oropharyngeal Carcinoma" described here is entirely own work of Joy Prokash Debnath bearing Registration No. 2019433077, Session: 2019-2020. This project does not contain any materials which were previously published or written by another person, except duly referred. The work was conducted under my supervision and was enrolled in the degree of Bachelor of Science in Biochemistry and Molecular Biology at the Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh. All information provided in the project paper has been obtained and presented following academic rules and ethical guidelines.

I hereby endorse his project to be submitted for evaluation.

Signature of the Supervisor

Papia Rahman

Lecturer

Department of Biochemistry and Molecular Biology (BMB)

Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

Abbreviations

Abbreviation	Full Form
OC	Oropharyngeal Carcinoma
DGE	Differential Gene Expression
PCA	Principal Component Analysis
VAE	Variational Autoencoder
SBS	Sensitivity-Based Scoring
GSEA	Gene Set Enrichment Analysis
IG	Integrated Gradients
AUROC	Area Under the Receiver Operating Characteristic curve
AUPRC	Area Under the Precision–Recall Curve
KEGG	Kyoto Encyclopedia of Genes and Genomes
GO	Gene Ontology
FDR	False Discovery Rate
MLP	Multi-Layer Perceptron
ERK	Extracellular Signal-Regulated Kinase
MAPK	Mitogen-Activated Protein Kinase
MMP	Matrix Metalloproteinase
IG	Integrated Gradients
LFC	Log Fold Change
NES	Normalized Enrichment Score

Abstract

Background: Conventional differential gene expression (DGE) analysis inadequately captures the complex molecular changes that drive the progression of oropharyngeal carcinoma (OC). Variational Autoencoder (VAE) offers a deep learning approach to uncover hidden patterns in high-dimensional transcriptomic data, potentially

Methods: Gene expression datasets were combined, from multiple databases and trained a PEM to compress the data into a small, hidden space. Integrated Gradients was utilized, an automated attribution technique, to determine the contribution of each gene to each latent node (biological representation). Genes that consistently had high attribution scores across all latent dimensions were chosen as potential regulators (driver genes). Pathway enrichment analysis and classification analyses unveiled the biological significance of these genes.

Results: The PEM learned latent features that are biologically important, and Integrated Gradients showed a group of genes that have a big impact on these features. RAP1GAP2 was consistently one of the top contributors across all 50 latent variables, which is noteworthy. RAP1GAP2 had the highest latent-space importance and strong discriminative power for telling OC apart, with a performance of 0.769. This occurred despite the lack of substantial differential expression in tumors relative to normal samples. Biological interpretation suggests that RAP1GAP2, a protein that activates Rap1 GTPase, may help tumors invade by turning off Rap1 and changing MAPK signaling and Golgi-mediated secretion.

Conclusion: Our deep learning framework found RAP1GAP2 to be a hidden driver in oropharyngeal carcinoma. This demonstrates how VAE and Integrated Gradients may discover molecular regulators overlooked by alternative approaches. This method delivers novel dimensions about the biology of OC tumors that could benefit future research and therapeutic approaches.

Keywords: Oropharyngeal carcinoma; transcriptomics; deep learning; latent features; RAP1GAP2; Rap1 signaling; MAPK pathway; Golgi secretion

Table of Contents

Contents	ge No.
Abstract	IV
Keywords:	IV
List of Tables	VII
List of Figures	VII
Chapter One: Introduction	
1.1 Overview of Oropharyngeal Carcinoma	1
1.2 Complexity of Cancer Biology and Analytical Gaps	2
1.3 Deep Learning for Latent Feature Discovery	2
1.4 Gene Attribution with Integrated Gradients	4
1.5 Revealing Hidden Driver: The Case of <i>RAP1GAP2</i>	5
1.6 Hypothesis	6
1.7 Significance of the Study	6
1.8 Aims and Objective	6
Chapter Two: Material and Methods	
2.1 Workflow of the Study	8
2.2 Datasets Retrieval	8
2.3 Data Integration, Batch Effect Removal and Preprocessing	10
2.4 Training Deep Neural Network Models	11
2.4.1 Datasets Merging and Standardization	11
2.4.2 Traditional Deep Learning Model	11
2.4.3 Additional Sample Distribution	12
2.5 Neural Network Design and Hyperparameter Optimization	12
2.5.1 Train Model with Adam Optimizer	12
2.5.2 Cross validate and Extract Best Latent Dimension	12
2.6 Learning Robust Latent Representations	13
2.7 Gene Attribution and Pathway Analysis	13
2.7.1 Sensitivity-Based Scoring (SBS) for Gene-to-Latent Attribution	13
2.7.2 Pathway Enrichment Analysis of Latent Variable-Associated Genes	13
2.7.3 Gene Set Enrichment Analysis (GSEA)	14

2.8 Supervised Deep Learning Model Training
2.8.1 Gene Selection and Data Collection
2.8.2 Normalization and Batch Correction
2.8.3 Model Development and Training
2.8.4 Evaluation and Visualization
2.9 Differential Gene Expression analysis
Chapter Three: Result
3.1 Data Preprocessing and Quality Assessment
3.2 Latent Space Extraction Using Deep Neural Network
3.3 Latent Variables Capture Distinct Gene Programs and Biological Pathways18
3.4 Functional Characterization of Latent Variables via GSEA20
21
3.5 Deep Learning-Based Classification of Candidate Driver Genes in Oropharyngeal Carcinoma
3.6 RAP1GAP2 Emerges as the Most Predictive Gene in Single-Feature Classification Models
3.7 RAP1GAP2 Emerges as a Key Latent Driver Despite Non-Significance in Differential Expression Analysis
Chapter Four: Discussion
4.1 Discussion
4.2 Limitations of the Study
4.3 Future Directions
Chapter Five: Conclusion
References
Appendices

List of Tables

SL. NO.	Table Captions	Page No.
Table 2.1	Expression Profiling Datasets for OC	9
Table 3.1	Performance metrics for single-gene classification models	24

List of Figures

SL. NO.	Figure Captions		
SE. 110.	Tigure Captions		
Figure 1.1	Anatomical regions of the head and neck involved	1	
	in cancer.		
Figure 1.2	Basic architecture of a deep neural network.	3	
Figure 2.1	Overview of the study pipeline	8	
Figure 3.1	Preprocessing and PCA of gene expression data	16	
Figure 3.2	Model Performance and Gene Attribution	17	
Figure 3.3	Interpretation of latent variables via gene	19	
	attribution and enrichment		
Figure 3.4	Pathway enrichment heatmap using GSEA	21	
Figure 3.5	Identification of key driver genes and classification	22	
	performance		
Figure 3.6	RAP1GAP2 as a predictive gene for OC	25	
	classification		
Figure 3.7	RAP1GAP2 as latent driver despite non-	26	
	significance in DGE		
Figure 4.1	Mechanistic role of RAP1GAP2 in OC invasion	30	
	and metastasis		

Chapter One

Introduction

1.1 Overview of Oropharyngeal Carcinoma

One type of head and neck cancer that has significant clinical significance is oropharyngeal carcinoma (OC). Human papillomavirus (HPV) infection has contributed to the increase in its incidence in recent decades, making HPV-positive oropharyngeal squamous cell carcinoma one of the cancers that is growing the fastest in many high-income nations (Lechner et al. 2022). An anatomical illustration of the oropharynx and its neighboring regions is shown in **Figure 1.1** to highlight the tumor's location and clinical context.

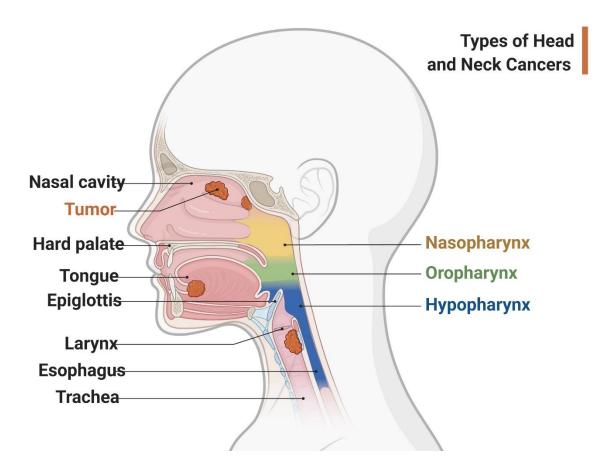


Figure 1.1 Anatomical regions of the head and neck involved in cancer. [Figure created using Adobe Illustrator v27.8.1].

Because of its subtle early symptoms, OC frequently manifests at advanced stages, leading to substantial morbidity and mortality. Therefore, a deeper comprehension of the molecular foundations of OC is urgently needed to facilitate earlier detection, better patient stratification, and more successful precision therapies (Sabbatini and Manganaro 2023). Results for advanced OC are still uncertain despite advancements in systemic treatments, radiation therapy, and surgery. Gaining a better understanding of the transcriptome

landscape of the tumor may help identify new molecular drivers that could enhance patient care.

1.2 Complexity of Cancer Biology and Analytical Gaps

The biology of cancer is extraordinarily complex, involving non-linear interactions among genes and pathways that drive tumor behavior. Traditional differential gene expression (DGE) analysis—which typically relies on linear models or statistical tests to find genes individually up- or down-regulated in tumors—has clear limitations when faced with this complexity. DGE methods excel at identifying genes with large average expression changes, but they may overlook hidden drivers that exert their effects through subtle or combinatorial patterns.

In other words, patient subgroups or tumor phenotypes could be determined by gene sets that do not show obvious one-at-a-time differences and thus remain "invisible" to linear DGE approaches (Rampášek et al. 2019). Indeed, recent work has cautioned that when nonlinear machine learning models identify patient groupings, the defining gene signatures might be missed by conventional DGE due to its linear nature (Rampášek et al. 2019).

Such underappreciated genes or gene interactions may be crucial for the development of cancer, making this gap problematic. Analytical techniques that can capture the nonlinear dependencies in gene expression data and go beyond linear assumptions are required. One potential remedy is explainable algorithms (machine learning), which can reveal multivariate gene patterns that would otherwise go unnoticed by applying interpretability techniques to complex models (Abbas and El-Manzalawy 2020; Way et al. 2020). In conclusion, techniques that can model and explain the complex, nonlinear relationships that define cancer biology are necessary to overcome the shortcomings of DGE.

1.3 Deep Learning for Latent Feature Discovery

We use deep learning—more especially, unsupervised deep neural networks—to learn biologically significant latent variables from transcriptomic data in order to overcome these difficulties. A class of deep generative models that are ideal for this task are Variational Autoencoder (VAE). A PEM preserves as much information as possible while compressing high-dimensional gene expression profiles into a lower-dimensional latent space. Complex gene expression patterns can be reduced by this method to a collection of latent features that capture patient variability and underlying biological signals. Figure 1.2 illustrates the basic architecture of a deep neural network, where an encoder maps gene expression into

latent representations for downstream interpretation. High-dimensional gene expression data are processed through multiple layers of an encoder network to generate low-dimensional latent features. These latent variables represent condensed biological signals and are suitable for interpretation, classification, or further modeling.

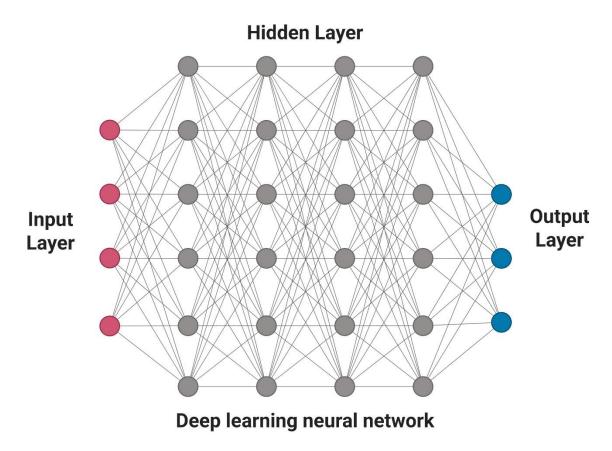


Figure 1.2 Basic architecture of a deep neural network. [Figure created using Adobe Illustrator v27.8.1].

Largescale gene expression datasets have seen the successful application of VAE and related autoencoder techniques, which have shown promise in modeling non-linear gene interactions and enhancing outcome predictions (Sundararajan et al. 2017). To illustrate the ability of deep learning to capture subtle transcriptomic effects of treatment, Rampášek et al. demonstrated that a PEM-based model ("Dr.PEM") could learn latent representations of cancer cell line expression data that improve drug response prediction (Zhang et al. 2006). Similar to this, Way et al. used PEM to compress pan cancer gene-expression data and discovered that different biological signals (like pathway activities and mutational status) emerged when the latent dimensionality was varied. This suggests that deep compression can learn complementary aspects of tumor biology that are not possible with a single linear compression or DGE analysis (Way et al. 2020). These studies underscore

that deep neural networks can extract non-linear features from gene expression data, potentially revealing patterns that are not evident to traditional methods.

However, a known drawback of deep learning models is their limited interpretability—the latent features or learned representations are "black boxes" without clear biological meaning. In the context of cancer transcriptomics, it is not enough to discover latent variables; we also need to understand which genes those variables represent or how they relate to known biology. Simply compressing data with a PEM might yield abstract features that correlate with disease, but without interpretation we cannot translate those features into testable biological insights.

1.4 Gene Attribution with Integrated Gradients

To interpret the latent space and connect it back to gene-level biology, we employ integrated gradients, a robust feature attribution method for neural networks. Integrated gradients provide a way to quantify the contribution of each input feature (in this case, each gene's expression) to a given output or latent variable in the model (Janizek et al. 2023). Formally, integrated gradients work by integrating the gradients of the model's output with respect to inputs along a path from a baseline to the actual input, yielding an attribution score for every feature that satisfies desirable axioms of fairness and sensitivity (Janizek et al. 2023). Introduced by Sundararajan et al. in 2017, this method has become a popular tool for explaining deep learning predictions in various domains (Janizek et al. 2023). In our study, we harness integrated gradients to attribute genes to latent variables learned by the PEM and to any downstream predictive outputs. This approach effectively "opens the black box" of the autoencoder by highlighting which genes most strongly influence each latent dimension of the model.

Notably, earlier studies have shown how useful it is to combine feature attribution and deep generative models in genomics. For instance, Dincer et al. identified the top contributing genes for each latent dimension by applying integrated gradients to the latent features of a PEM trained on cancer gene expression data (Janizek et al., 2023). Researchers can anchor abstract features in concrete biology by using this post hoc interpretation of latent space. For example, based on the genes with the highest attributions, a latent dimension may end up representing a pathway or cell cycle signature. Building on these concepts, we derive gene-level importance scores for the learned latent factors by combining our PEM with integrated gradients. By doing this, we can identify the genes that are most important for

differentiating oropharyngeal tumors from controls (or other tumor subtypes) and that drive the variations recorded in the latent space. In addition to maintaining interpretability, this combination of unsupervised, deep learning and explainability techniques enables us to find biologically significant patterns that would be missed by linear analysis alone.

1.5 Revealing Hidden Driver: The Case of RAP1GAP2

By using this deep learning framework on OC transcriptomic data, new understandings of the molecular causes of the disease are revealed. Integrated gradients identify the genes that define the latent variables that the variational autoencoder extracts and that summarize gene expression patterns across tumors. Our analysis reveals that RAP1GAP2 is a crucial latent driver gene in oropharyngeal carcinoma, which is intriguing. With a high attribution score, RAP1GAP2 stands out in our model as one of the main contributors to a latent feature that is very predictive of the presence of OC. This finding is noteworthy because, according to standard differential expression analysis, RAP1GAP2 was not identified as significant; that is, its average expression levels between tumor and normal do not differ sufficiently to meet standard statistical thresholds. RAP1GAP2 would have been completely overlooked by traditional DGE, but our deep learning method revealed it to be a significant participant with a nonlinear contribution to the tumor transcriptome. The impact of RAP1GAP2 only becomes apparent when taking into account intricate interactions recorded in the latent space, demonstrating how deep learning can uncover "hidden" drivers that elude linear analysis.

From a biological standpoint, the implication of RAP1GAP2 in OC is plausible and generates new hypotheses. Although RAP1GAP2 itself has not been well-studied in oropharyngeal cancer, it belongs to the same family as Rap1GAP (also known as RAP1GAP1), which has been reported to act as a tumor suppressor in squamous cell carcinoma. In fact, restoring Rap1GAP expression in OC cell lines was shown to reduce active Rap1 signaling and significantly slow tumor growth in vivo (Zhang et al. 2006). This prior evidence of the Rap1 pathway's involvement in head and neck cancer provides context for our findings: it suggests that downregulation or dysregulation of Rap1-inhibitory proteins (like Rap1GAP or RAP1GAP2) could contribute to oncogenic processes in the oropharynx. Our discovery of RAP1GAP2 as a latent driver, despite its subtle expression changes, underscores how deep learning-based analysis can pinpoint functionally relevant genes that conventional analyses deem insignificant. Such genes might represent early changes or context specific vulnerabilities that are missed when

focusing only on large fold-changes. Identifying RAP1GAP2 as highly predictive of OC opens the door to further experimental validation and investigation into its potential role in tumor suppression or as a biomarker for disease presence.

1.6 Hypothesis of the Study

We hypothesize that deep neural networks, particularly Probabilistic Embedding Model (PEM) models, can learn latent representations of transcriptomic data that capture complex, nonlinear biological signals associated with oropharyngeal carcinoma. These latent features are expected to reveal molecular regulators that conventional differential gene expression (DGE) analyses may overlook due to their reliance on linear assumptions. By integrating unsupervised deep learning with interpretability techniques such as integrated gradients, we anticipate uncovering key gene-level contributors—such as RAP1GAP2—that drive tumor invasion and progression despite showing no significant differential expression. This approach offers a novel avenue for identifying biologically relevant signals embedded in high-dimensional gene expression data.

1.7 Significance of the Study

Comprehending the molecular pathways underlying oropharyngeal cancer (OC) is a significant challenge, especially due to the constraints of conventional gene expression analysis techniques that frequently depend on linear assumptions. This paper presents a deep learning system that may reveal nonlinear and concealed transcriptome signals, providing an innovative method for identifying genetic drivers of ovarian cancer. Utilizing variational autoencoders and integrated gradients, we discovered RAP1GAP2 as an unknown factor in tumor invasion and development, despite its absence of differential expression according to traditional statistical standards. This underscores the capability of modern computational modeling to not only augment but also exceed conventional analytical methods. The results of this study provide novel avenues for biological research and therapeutic development in ovarian cancer and create a framework for the application of interpretable deep learning to other intricate diseases.

1.8 Aims and Objective

This study aims to uncover hidden transcriptomic patterns and identify novel gene-level drivers of oropharyngeal carcinoma (OC) by applying deep neural network-based methods—specifically variational autoencoders and integrated gradients—that go beyond the limitations of traditional differential expression analysis.

Objectives of the study are,

- To apply deep learning (PEM) for compressing gene expression into latent features.
- To detect complex, nonlinear gene patterns missed by standard tools.
- To interpret latent features using Integrated Gradients for gene attribution.
- To combine unsupervised modeling with supervised classification.
- To identify novel molecular drivers involved in OC progression.
- To compare the performance of this method with traditional differential gene expression approaches.

Chapter Two

Material and Methods

2.1 Workflow of the Study

The design of the overall study is illustrated in **Figure 2.1**

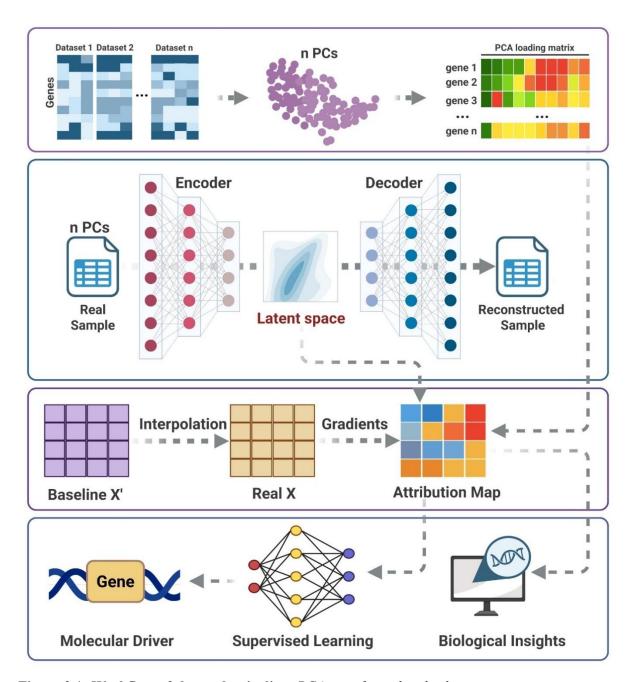


Figure 2.1: Workflow of the study pipeline. PCA-transformed multi-dataset gene expression is encoded via PEM to latent space, followed by Integrated Gradients-based gene attribution and supervised learning to identify molecular drivers and extract biological insights of the latent spaces. [Figure generated using Adobe Illustrator v27.8.1].

2.2 Datasets Retrieval

Publicly available gene-expression datasets of oral carcinoma (OC) generated using different platforms—including [HG-U133 Plus 2] Affymetrix Human Genome U133 Plus

2.0 Array, [HG-U133A] Affymetrix Human Genome U133A Array, Illumina NextSeq 500 (Homo sapiens)—were downloaded. A total of 19 datasets were parsed from the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database for Oral Cancer types, where a python library GEOparse v2.0.0 (https://github.com/guma44/GEOparse) was incorporated to extract the sequencing data with their phenotype data from the database server. All information about the datasets including sample size mentioned in **Table 2.1**.

Table 2.1 Expression Profiling Datasets for OC

GEO_Accession	Samples	Platform	Study_Type
GSE37991	80 (40 tumor + 40 normal)	GPL6883 (Illumina HumanRef-8)	Expression profiling by array
GSE23558	31 (27 tumor + 4 normal)	GPL6480 (Agilent 44K)	Expression profiling by array
GSE25099	79 (57 tumor + 22 normal)	GPL5175 (Affymetrix Exon ST)	Expression profiling by array
GSE10121	41 (35 tumor + 6 normal)	Operon Oligoset 4.0	Expression profiling by array
GSE31853	11 (8 tumor cell lines + 3 normal)	GPL96/570 (Affymetrix)	Expression profiling by array
GSE131182	12 (6 paired tumor + normal)	GPL20301 (Illumina HiSeq)	Expression profiling by RNA-seq
GSE145272	10 (5 metastatic + 5 non- metastatic)	HiSeq 2500 RNA-seq	Expression profiling by RNA-seq
GSE217142	6 (primary + recurrent tumors)	NovaSeq 6000 RNA-seq	Expression profiling by RNA-seq
GSE85195	49 (34 OSCC + 15 OPL)	GPL6480 (Agilent 44K)	Expression profiling by array
GSE168227	6 paired tumor- normal samples	Agilent IncRNA microarray	Expression profiling by array
GSE84805	6 paired tumor- normal samples	Agilent IncRNA array	Expression profiling by array

GSE30784	229 total (167 tumor + others)	GPL570 (Affymetrix U133 Plus 2.0)	Expression profiling by array
GSE2280	32 (27 non- metastatic + 5 metastatic)	GPL96 (Affymetrix U133A)	Expression profiling by array
GSE3524	20 (16 tumor + 4 normal)	GPL96 (Affymetrix U133A)	Expression profiling by array
GSE6791	154 (119 tumor + 35 controls)	Affymetrix U133 Plus 2.0	Expression profiling by array
GSE41442	55 (45 tumor + 10 normal)	GPL570 (Affymetrix)	Expression profiling by array
GSE37371	100 (50 tumor + 50 normal)	GPL96 (Affymetrix)	Expression profiling by array
GSE23030	30 metastatic tongue OSCC	GPL5175 (Affymetrix Exon ST)	Expression profiling by array
GSE29000	50 (40 tumor + 10 normal)	GPL570 (Affymetrix)	Expression profiling by array

Extracted results according to the supplied ArrayExpress accession ids filtered out based on the treatment and condition of the samples. We got a total of 1001 samples from all the datasets combined, where sample number with OC positive was 754. Samples treated with radiation therapy, chemotherapy, targeted therapy, immunotherapy, hormonal therapy and drugs were excluded from the study manually.

2.3 Data Integration, Batch Effect Removal and Preprocessing

To amalgamate data from different platforms, a python data analysis library pandas v1.5.3 (McKinney 2011) was incorporated. Data imputation was conducted by missForest v0.9 (Stekhoven and Bühlmann 2012) package in R to avoid the NA values in the datasets. For concatenating multiple datasets from multiple platforms with different techniques, a batch effect correction method based on python library was applied on the integrated data to combat the platform specific biases. A function called "ComBat" from python library pyComBat v0.3.2 (Behdenna et al. 2023) was used to remove the technical biases that arose by the integration process. Expression data of merged dataset was log-transformed, Z-standardized on each gene to ensure that all features are on the same scale.

2.4 Training Deep Neural Network Models

2.4.1 Datasets Merging and Standardization

After manual selection and preprocessing, we had 663 cancer-positive samples, each containing 11020 genes—common in all datasets. Despite the high dimensional gene expression matrix, which was complex to interpret the samples with their condition, a principal component analysis was conducted with 500 PCs (n_components=500) while preserving all important data and variance among the samples. PCA was performed in R using the following packages: stats v4.2.3, factoextra v1.0.7 (Kassambara and Mundt 2020) for extraction and display of PCA results, and dplyr v1.1.4 (Hadley Wickham et al. 2020) for data manipulation.

2.4.2 Traditional Deep Learning Model

A probabilistic latent variable model was built on reduced PC data to learn a compact, non-linear delineation of the high-dimensional gene expression data. This is a type of neural network that contains an encoder and a decoder network with an entropy-limited latent mapping with D latent variables (here, $D \ll M$, where M=500PC, represents the number of features) in the middle. This process generates an embedding Z, which preserves the whole information of the input (500PC) into a lower dimensional space (Bro and Smilde 2014). Categorically, the encoder network, defined as $f_{\phi}: X \to Z$, maps from the input space $X \in \mathbb{R}^M$ to latent embedding $Z \in \mathbb{R}^D$. Similarly, the decoder network, defined as $g_{\phi}: Z \to X$ maps the embedding Z back to input space. The main objective of the model is to minimize the anticipated squared Euclidean (L2) norm (Tian et al. 2017) between the input and its reconstruction:

$$\min_{\phi,\varphi} \mathbb{E} \left\| x - g_{\varphi} \left(f_{\phi}(x) \right) \right\|_{2}^{2} \qquad \dots \dots \dots (i)$$

Here in (i) equation, ϕ and φ are the parameters of the encoder and decoder, respectively, and $\hat{x} = g_{\varphi} \left(f_{\varphi}(x) \right)$ represents the reconstructed input for every sample. Where, L2 loss denoted by $\| x - \hat{x} \|_2^2$, captures the total reconstruction error across all dimensions of the input. Overtly, this corresponds to:

$$(x_1 - \hat{x}_1)^2 + (x_2 - \hat{x}_2)^2 + \dots + (x_n - \hat{x}_n)^2$$
 (ii)

2.4.3 Additional Sample Distribution

Unlike conventional approach, we used probabilistic embedding model (PEM), which encodes each sample as a probability distribution—captures uncertainty and biological variability inherent in gene expression profiles. Samples with 500 principal components (PCs) were used to construct the input matrix $X \in \mathbb{R}^{N \times M}$, where N is the number of samples and M is the number of features. This matrix was passed to an encoder f_{θ} , which outputs a mean vector $\mu_x \in \mathbb{R}^D$ and a variance vector $\sigma_x \in \mathbb{R}^D$:

$$f_{\phi}: X \to (\mu_{X}, \sigma_{X}), \quad Z \sim \mathcal{N}(\mu_{X}, \sigma_{X}) \quad \dots \dots \dots$$
 (iii)

A decoder g_{φ} reconstructs the input from the sampled latent vector Z. The model is trained to minimize the following loss:

$$\min_{\phi,\varphi} \mathbb{E} \| x - g_{\varphi}(f_{\phi}(x)) \|_{2}^{2} + \mathrm{KL}[(\mu_{x},\sigma_{x}),\mathcal{N}(0,1)] \qquad \dots \dots (\mathrm{iv})$$

The first term ensures accurate reconstruction, while the KL divergence regularizes the latent space by encouraging it to resemble a standard (Pan et al. 2020). After training, the learned latent variables Z were used for gene importance analysis using Integrated Gradients, followed by pathway enrichment.

2.5 Neural Network Design and Hyperparameter Optimization

2.5.1 Train Model with Adam Optimizer

PEM models were trained to unite the PCs from the OC gene expression matrix as inputs. Three-layer encoder and decoder networks were designed as a mirror of each other. The model was trained in batches of 50 samples by using (Wang et al. 2022), with a learning rate of 0.0005, with weight initialized randomly using the Glorot uniform method.

2.5.2 Cross validate and Extract Best Latent Dimension

To determine the best fitted latent space as per my study, we deliberately selected a set of sizes: 5, 10, 25, 50, 75, and 100. This comprehensive selection was made to give our models a broad scope to capture a wide range of information from the datasets. Hyperparameter tuning was performed to fine-tune hyperparameters including the dropout rate and the number of neurons per layer using 5-fold cross-validation, guided by validation reconstruction error (Elgeldawi et al. 2021). We tested dropout values including 0, 0.2, 0.4, and 0.6. For hidden layer configurations, we explored multiple settings such as (50, 5),

(100, 25), (250, 50), (250, 100), and (300, 150), where the first and second values indicate the number of neurons in the first and second hidden layers, respectively. The model was implemented in Python using Keras v2.2.4 (Chollet 2015) and TensorFlow v1.12.0 (Filus and Domańska 2023).

2.6 Learning Robust Latent Representations

To find out the stable and fruitful biological representation of the data, VAE were trained with different random initializations and latent dimensionalities. For each latent size, training across multiple random seeds was repeated, resulting in a large collection of embeddings. To aggregate latent variables $\mathbf{Z} \in \mathbb{R}^d$ generated across multiple folds of different models, k-means clustering was applied to group (I) similar latent features together (Sinaga and Yang 2020). To obtain the final ensemble latent dimension $\mathbf{Z}_{ensemble} \in \mathbb{R}^L$, G-means clustering was implemented, resulting in a fixed latent size L=50, which was used across all samples for downstream analysis. The final latent embedding for each sample was constructed by averaging all latent variables within each cluster (Ri and Kim 2020).

2.7 Gene Attribution and Pathway Analysis

2.7.1 Sensitivity-Based Scoring (SBS) for Gene-to-Latent Attribution

To determine which gene contributed to what latent variables, a custom sensitivity-based scoring (SBS) approach was applied. SBS was first integrated into the method to calculate the importance of each PC for every latent variable. Then these attributions were scaled to gene level with the PC level weights, resulting in gene-level importance scores and by averaging we got global gene attributions for each latent.

2.7.2 Pathway Enrichment Analysis of Latent Variable-Associated Genes

To interpret the biological representation, top-ranked genes derived from every ensemble latent variable, we performed pathway enrichment analysis using the g:Profiler tool via the gprofiler2 v2.34 (Peterson et al. 2020) R package. Gene sets with the highest attribution scores were input into the gost() function, which maps genes to known functional categories including Gene Ontology (GO) terms (Biological Process, Molecular Function, Cellular Component), KEGG pathways, and Reactome pathways (Carbon et al. 2017; Jassal et al. 2020; Kanehisa et al. 2023). We used the default settings for the organism (*Homo sapiens*), applied multiple testing correction via the Benjamini–Hochberg method (FDR < 0.05), and

excluded electronic GO annotations to improve specificity (Ferreira and Zwinderman 2006). The results were visualized and ranked by adjusted p-values and term size to highlight the most enriched biological functions associated with each latent variable.

2.7.3 Gene Set Enrichment Analysis (GSEA)

To uncover the biological functions associated with each latent variable, we performed Gene Set Enrichment Analysis (GSEA) using pre-ranked gene lists derived from latent variable attributions (Balagopalan et al. 2009). The enrichment results were obtained using a standardized pipeline and summarized across all latent variables. Pathways with a false discovery rate (FDR) < 0.05 were considered statistically significant. We calculated the normalized enrichment score (NES) for each term-latent pair and constructed a matrix of NES values. To focus on the most variable biological patterns, we selected the top 50 pathways based on the highest variance across latent variables. These were visualized as a heatmap using the seaborn v0.11.5 (Waskom 2021)library in Python, highlighting pathway–latent associations that may represent underlying biological signals.

2.8 Supervised Deep Learning Model Training

2.8.1 Gene Selection and Data Collection

To identify important driver genes for oropharyngeal carcinoma (OC), we analyzed gene attribution scores generated by the Deep model across 50 latent variables. Based on this analysis, we selected 20 genes that consistently ranked among the top contributors across multiple latent dimensions. These candidate driver genes were validated using an independent dataset, which included both OC and non-tumor control samples profiled on Illumina HiSeq 4000 and NovaSeq 6000 sequencing platforms.

2.8.2 Normalization and Batch Correction

To address potential batch effects and platform-specific variability, we applied gene-wise Z-score normalization within each batch. Following normalization, batch correction was carried out using the empirical Bayes method implemented in the pycombat v0.3.5. All data manipulation and preprocessing were performed using the pandas v2.2.1 and numpy v1.24.4 libraries, with additional support from scanpy v1.9.6 (Wolf et al. 2018) for annotation and matrix handling.

2.8.3 Model Development and Training

We developed and trained three types of deep learning models to classify samples into OC or control groups based on the expression of the 20 selected genes. These models were implemented using TensorFlow 2.12.0 with the Keras backend. Hyperparameter tuning was conducted using the kerastuner library v1.3.5, and model performance was assessed through five-fold stratified cross-validation (Wazery et al. 2023). The optimal MLP architecture consisted of two hidden layers with 128 and 64 neurons respectively, each followed by ReLU activation and dropout layers with a rate of 0.2. A final sigmoid-activated output layer was used for binary classification (Tolstikhin et al. 2021). All models were trained using the Adam optimizer (Wang et al. 2022) (learning rate = 1e-4), binary cross-entropy loss, a batch size of 32, and early stopping based on validation loss with a patience of 10 epochs.

2.8.4 Evaluation and Visualization

Model performance was evaluated using two key metrics: area under the precision–recall curve (AUPRC) and area under the receiver operating characteristic curve (AUROC). Visualizations of model predictions, ROC curves, and PR curves were generated using matplotlib v3.8.0 and seaborn v0.13.2. All experiments were conducted in a Linux-based computing environment.

2.9 Differential Gene Expression analysis

Expression data were analyzed *using* DESeq2 v1.40.2 (Love et al. 2014). Low-expression entries were removed before normalization. Variance-stabilizing transformation was applied for visualization. Differential expression analysis was performed using negative binomial distribution, and significance was defined as adjusted p-value < 0.05 and absolute log₂ fold change > 1. Volcano plots were generated using EnhancedVolcano v1.20.0 (Blighe et al. 2021).

Chapter Three

Result

3.1 Data Preprocessing and Quality Assessment

Highly expressive models such as deep neural networks tend to overfit when the sample size is small, we collected 19 available expression datasets from different platforms for human Oropharyngeal Cancer (OC). To remove the platform-specific biases, we preprocessed the datasets (Figure 3.1A), manually excluded samples that did not satisfy the requirements, and finalized 643 samples for PCA, with 11020 genes common across all datasets. Standardized gene expression values were visualized using a boxplot (Figure 3.1A) among all the samples, showing consistent distribution across samples and confirming effective scalability. PCA was performed on the 643 samples expression to reduce the dimension of the features in 500 **PCs**

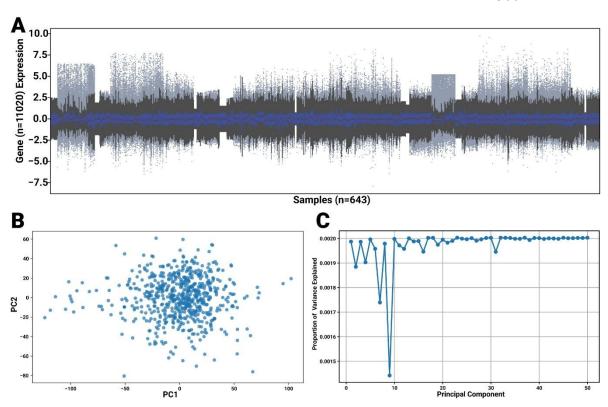


Figure 3.1: Preprocessing and PCA of gene expression data. (A) Boxplot of standardized expression values for 11,020 genes across 643 finalized samples. Each box represents one sample, where dots represent outliers. (B) PCA scatterplot, containing the first two principal components for all samples; X axis containing PC1 and Y axis containing PC2 (C) Scree plot showing the proportion of variance explained by the first 50 principal components. The variance contribution is uniformly low, supporting their use in downstream neural network training. [Figure generated using Python v3.12].

for model training, where scatterplot (**Figure 3.1B**) showed no ostensible clustering or batch effect, indicating appropriateness for unsupervised modeling. The scree plot (**Figure 3.1C**) of the first 50 PCs shows uniformly low variance, confirmed that the components are evenly distributed. Other 450 PCs are similarly contained the same proportion of variance around 0.002. A minor drop in ratio in PC9 was observed, which likely reflects numerical or structural variance fluctuations other than biological interpretation.

3.2 Latent Space Extraction Using Deep Neural Network

Multiple models trained using the latent dimensions, including 5, 10, 25, 50, 75, and 100, and evaluated their ability to reconstruct the same sample using the parameters based on reconstruction error in both training and validation sets (**Figure 3.2A**).

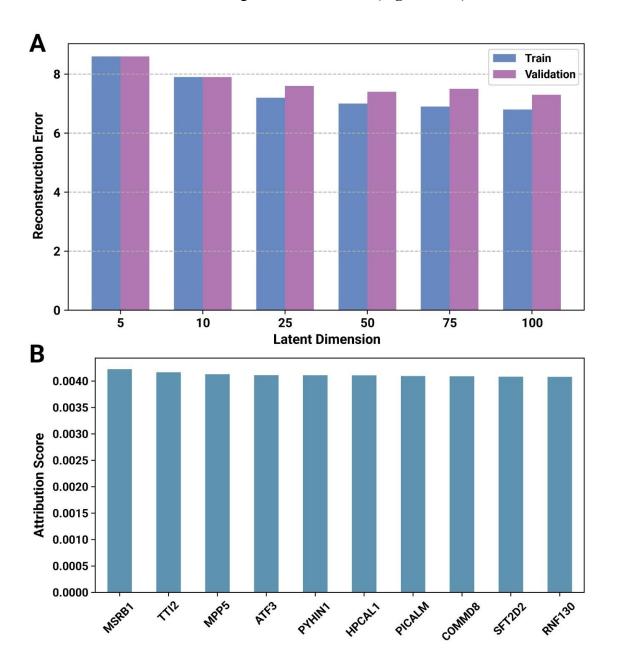


Figure 3.2: Model Performance and Gene Attribution. (A) Barplot showing reconstruction error for both training and validation sets across different latent dimensions. X axis represents the latent nodes and Y axis showing the reconstruction error values. (B) Barplot showing the top 10 genes contributed to Latent Node 0, based on absolute Integrated Gradients (IG) scores from the ensemble attribution matrix. [Figure generated using Python v3.12].

As the number of latent nodes increases, the reconstruction errors reduce as per the change, representing higher capacity of reconstruction. However, the improvement stops after 50 dimensions, which implies that higher nodes can increase the risk of overfitting the data as well as the complexity of the process. Therefore, we selected 50 nodes of latent to finalize the PEM models and got multiple folds of latent from all the models in each fold. This hyperparameter tuning helped us to reach the most relevant latent spaces, understand the core biology of OC from the complex environment of the data.

Figure 3.2B, a sample representation of the top 10 genes in the first latent dimension, showing the strong connection with the latent node 0, ranked by their importance score. These genes, including MSRB1 (0.00416), TTI2 (0.00389), MPP5 (0.00358), ATF3 (0.00354), PYHIN1 (0.00349), HPCAL1 (0.00349), PICALM (0.00342), COMMD8 (0.0033), SFT2D2 (0.00325), RNF130 (0.00320), are the primary drivers of the representation/signal captured by this latent space. Top 10 drivers of the representation from all 50 lanterns mentioned in **Appendix I**.

3.3 Latent Variables Capture Distinct Gene Programs and Biological Pathways

To characterize the biological meaning of the latent space learned by the PEM model, we analyzed gene-level attributions using Integrated Gradients. We computed mean attribution scores for each gene across all 50 latent variables (latent nodes) and selected the top 20 genes with the highest overall contributions (Figure 3.3A). These included genes such as DDX43, FABP4, RAP1GAP2, KCNK5, XIST, ZNF839, CTH, ERC2, and PDK3, among others. Mean attribution scores across latents ranged from 0.0035 to 0.0055, with FABP4 and CTH contributing strongly to Latent 24 and 25, and ERC2 and ZNF839 dominating Latent 28, indicating distinct gene modules regulating each latent.

Hierarchical clustering of latent variables based on gene attribution profiles revealed modular structures, where sets of genes co-regulated subsets of latent nodes. For instance,

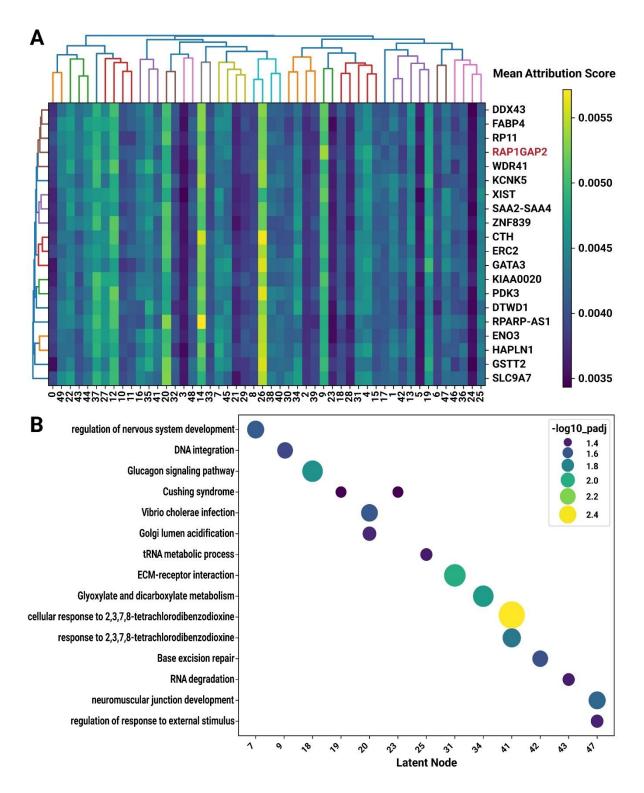


Figure 3.3: Interpretation of PEM latent variables through gene attribution and pathway enrichment. (A) Heatmap showing the mean Integrated Gradients attribution scores of the top 20 genes across all 50 latent variables. Both rows (genes) and columns (latents) were hierarchically clustered, revealing modular structures among gene-latent relationships. (B) Dot plot summarizing the most significantly enriched biological pathways for selected latent variables. Each dot represents a latent-pathway pair, with dot

size and color corresponding to the enrichment significance ($-log_{10}$ padj). [Figure generated using Python v3.12].

Latents 24, 25, and 28 clustered closely and shared top-contributing genes involved in lipid metabolism and oxidative stress response, such as FABP4, CTH, and SAA2-SAA4.

Figure 3.3B illustrates the g: Profiler enrichment analysis of top-ranking genes from individual latent variables. Each dot represents a significantly enriched biological process, mapped to its corresponding latent node. Several latent variables were linked to distinct and functionally relevant pathways. For example, Latent 9 showed strong enrichment for DNA integration, suggesting potential involvement in genomic stability or viral interaction processes. Latent 20 was enriched for Golgi lumen acidification and Golgi-associated signaling, indicating a role in intracellular trafficking and post-translational modification. Latent 5 was associated with regulation of nervous system development, while Latent 33 was enriched for ECM-receptor interaction, pointing toward microenvironmental and adhesion-related mechanisms. Pathways related to RNA degradation (Latent 39), base excision repair (Latent 34), and neuromuscular junction development (Latent 45) were also identified, reflecting the biological diversity embedded within the latent dimensions. A complete table of enriched pathways, including adjusted p-values, enrichment scores, and associated gene sets for all 50 latent, is provided in **Appendix II**.

3.4 Functional Characterization of Latent Variables via GSEA

To further evaluate the functional relevance of the latent space, we performed Gene Set Enrichment Analysis (GSEA) using the ranked gene attributions for each of the 50 latent variables and visualized the results in a pathway–latent heatmap (**Figure 3.4A**). The heatmap displays the Normalized Enrichment Scores (NES) across a curated panel of KEGG pathways, capturing the direction and magnitude of enrichment. Red tones indicate positive enrichment (NES > 0), whereas blue tones indicate negative enrichment (NES < 0).

Several latent variables were significantly enriched for known cancer-related and immune-related pathways. Latent 6 and Latent 21 were positively enriched for Ribosome and Oxidative Phosphorylation, processes often upregulated in proliferative tumor cells. Latent 15 and Latent 24 showed strong positive enrichment in immune pathways such as JAK-STAT signaling, Cytokine-cytokine receptor interaction, and Antigen processing and presentation. Latent 36 and Latent 48 were associated with Mismatch repair, Fanconi

anemia, and Cell cycle, indicating potential links to genomic instability. Negative enrichment was observed for several inflammation-related pathways (e.g., Inflammatory bowel disease, Primary immunodeficiency, NF-kappa B signaling), particularly in Latents 3, 9, and 18. Other Results of GSEA mentioned in **Appendix III.**

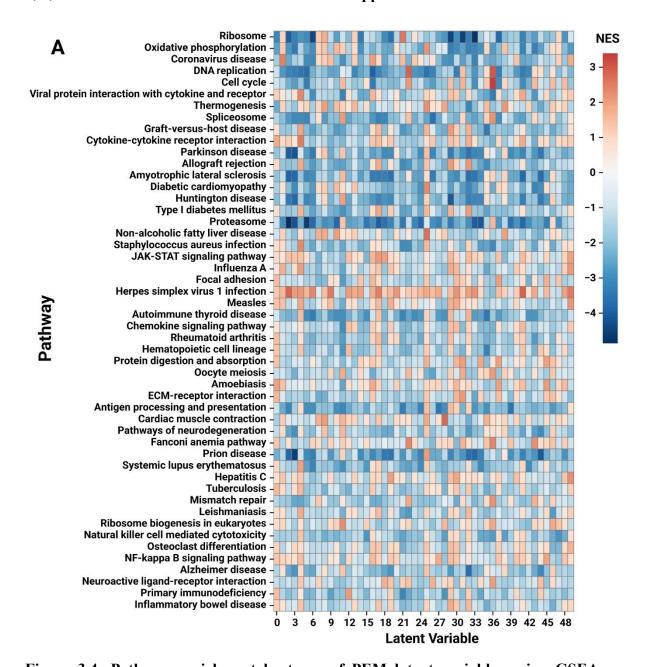
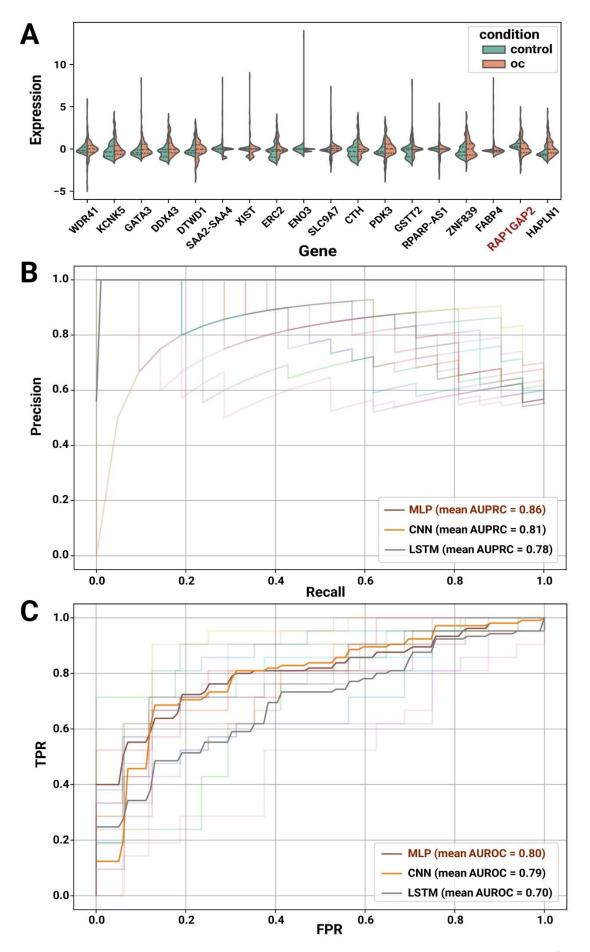


Figure 3.4: Pathway enrichment heatmap of PEM latent variables using GSEA. Heatmap shows NES for pathways enriched across 50 latent variables. Each row represents a pathway and each column a latent node. Red shades indicate positive enrichment (NES > 0) and blue shades indicate negative (NES < 0). [Figure generated using Python v3.12].



Page | 22

Figure 3.5: Identification of key driver genes and classification performance in oropharyngeal carcinoma. (A) Violin plots showing the expression distributions of 20 consensus genes, derived from PEM latent space attribution scores, across control and oropharyngeal OC samples in an external high-throughput RNA-seq dataset. (B) Precision—Recall (PR) curves comparing three supervised deep learning models trained on the expression profiles of the 20 genes. (C) Receiver operating characteristic (ROC) curves for the same models. [Figure generated using Python v3.12].

3.5 Deep Learning-Based Classification of Candidate Driver Genes in Oropharyngeal Carcinoma

To visualize the expression profiles of the 20 candidate driver genes across control and OC samples, we generated violin plots (Figure 3.5A) and boxplots in Appendix IV. Several genes exhibited substantial differential expressions between the two groups. Notably, RAP1GAP2, CTH, and FABP4 were highly expressed in OC samples compared to controls, suggesting their potential role as diagnostic or functional markers. Conversely, genes like XIST and ERC2 displayed more variable patterns, hinting at subtype-specific or microenvironmental influences. We then assessed the ability of the 20-gene panel to classify OC using supervised deep learning models. As shown in the performance plots (Figure 3.5B & C), the MLP model consistently outperformed CNN and LSTM across all evaluation folds. The MLP achieved a mean AUPRC of 0.86 and mean AUROC of 0.80, followed by the CNN with an AUPRC of 0.81 and AUROC of 0.79, and the LSTM with an AUPRC of 0.78 and AUROC of 0.70.

These results indicate that the MLP model is best suited for classifying OC based on the selected latent-informed gene set. The consistently high AUPRC and AUROC suggest that the PEM-derived genes, particularly RAP1GAP2, PDK3, and FABP4, may serve as effective driver markers or classifiers for oropharyngeal carcinoma in high-throughput transcriptomic data (Table 3.1), (Appendix V).

3.6 RAP1GAP2 Emerges as the Most Predictive Gene in Single-Feature Classification Models

To identify the most predictive gene within the consensus panel, we trained single-feature models for each of the 20 genes and computed their individual feature importances using the supervised MLP model described previously. The resulting importance scores are visualized in **Figure 3.6A**, where RAP1GAP2 ranked as the most informative gene,

followed closely by XIST, SLC9A7, and FABP4. This suggests that RAP1GAP2 holds strong discriminative power for separating oropharyngeal carcinoma from control samples, reinforcing its prominence in both latent attribution analysis and expression profiling.

To validate its predictive strength, we constructed a single-gene MLP classifier using only the expression values of RAP1GAP2. The resulting Precision–Recall curve, shown in **Figure 3.6B**, achieved a mean AUPRC of 0.769, indicating robust classification performance using this gene alone. This further supports the hypothesis that RAP1GAP2 may serve as a potent driver or biomarker of oropharyngeal carcinoma and warrants further experimental validation.

Table 3.1 Performance metrics for single-gene classification models

Gene	AUROC	AUPRC	Accuracy	F1	Precision	Recall
WDR41	0.640	0.650	0.556	0.711	0.560	0.971
KCNK5	0.540	0.560	0.524	0.686	0.545	0.924
GATA3	0.590	0.580	0.620	0.667	0.657	0.676
DDX43	0.550	0.570	0.513	0.629	0.550	0.733
DTWD1	0.650	0.640	0.535	0.679	0.554	0.876
XIST	0.594	0.708	0.540	0.688	0.556	0.905
SAA2-SAA4	0.557	0.621	0.556	0.709	0.561	0.962
ERC2	0.550	0.560	0.610	0.709	0.610	0.848
ENO3	0.610	0.590	0.567	0.722	0.565	1.000
SLC9A7	0.710	0.710	0.594	0.689	0.604	0.800
СТН	0.590	0.590	0.604	0.711	0.603	0.867
PDK3	0.570	0.600	0.567	0.675	0.583	0.800
GSTT2	0.643	0.664	0.642	0.735	0.628	0.886

RPARP-AS1	0.528	0.619	0.540	0.699	0.552	0.952
ZNF839	0.550	0.590	0.556	0.711	0.560	0.971
FABP4	0.520	0.530	0.535	0.695	0.550	0.943
RAP1GAP2	0.710	0.769	0.730	0.760	0.700	0.940
HAPLN1	0.606	0.676	0.615	0.692	0.628	0.771

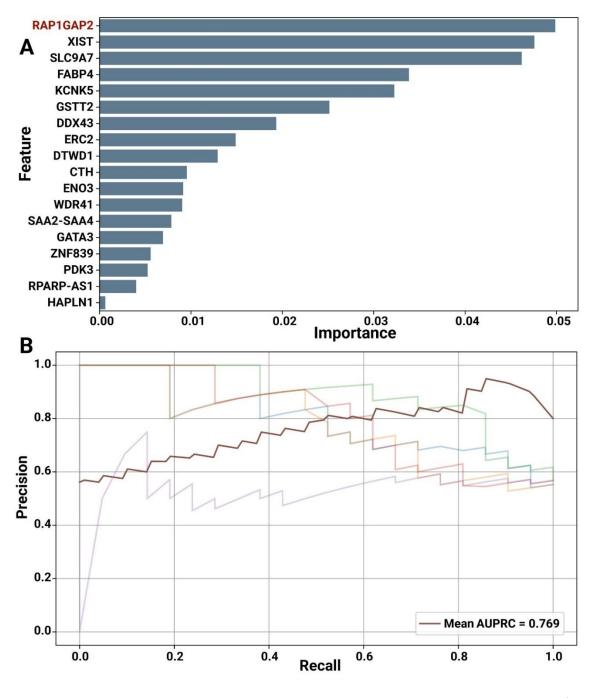


Figure 3.6: RAP1GAP2 identified as the top predictive gene for oropharyngeal carcinoma classification. (A) Feature importance scores for each of the 20 genes in the supervised MLP model. RAP1GAP2 ranked highest, suggesting its dominant role in classification. (B) Precision—Recall curve for the single-gene classifier trained exclusively on RAP1GAP2 expression. The model achieved a mean AUPRC of 0.769, indicating strong predictive capacity from this gene alone. [Figure generated using Python v3.12].

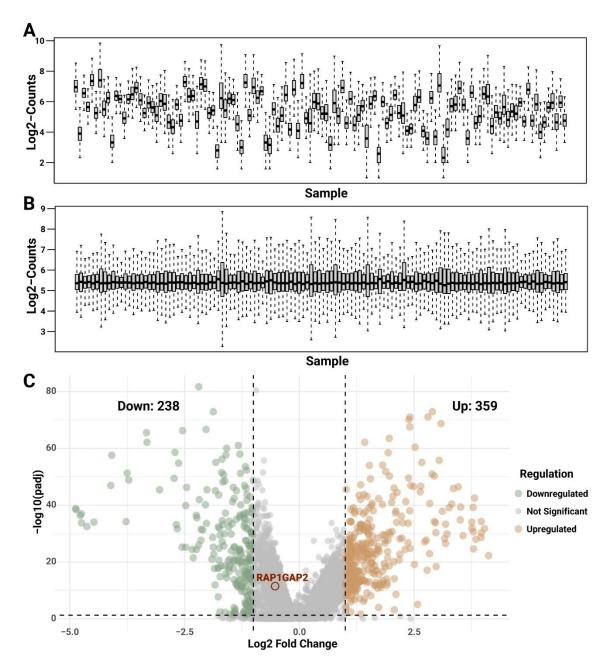


Figure 3.7: Identification of RAP1GAP2 as a latent driver despite non-significance in differential expression analysis. (A) Raw gene expression across samples before normalization. (B) Normalized expression profiles of all samples. (C) Volcano plot of

differential gene expression analysis: upregulated, downregulated, and non-significant genes are shown. RAP1GAP2, highlighted in red, was not significantly differentially expressed but was identified as a top contributor across all latent variables and showed the highest classification ability in the deep learning model, supporting its role as a hidden driver in oropharyngeal carcinoma. [Figure generated using R v4.3.2 with RStudio v2023.09.1].

3.7 RAP1GAP2 Emerges as a Key Latent Driver Despite Non-Significance in Differential Expression Analysis

Figure 3.7A & B show the gene expression distributions of the RNA-seq datasets before and after normalization, respectively. **Figure 3.7A** illustrates the raw, unnormalized transcript counts, highlighting variability across samples.

In contrast, **Figure 3.7B** demonstrates the effect of DEseq2 normalization, resulting in more comparable and standardized expression profiles across all samples, ensuring the reliability of downstream analyses.

However, differential gene expression (DGE) analysis failed to identify RAP1GAP2 as significant in LFC values. As shown in **Figure 3.7C**, RAP1GAP2 resides within the "not significant" region of the volcano plot, indicating that it was not differentially expressed based on standard thresholds (log2 fold change and FDR-adjusted p-value).

Chapter Four

Discussion

4.1 Discussion

This study employed a deep learning framework to reveal novel molecular patterns and latent drivers overlooked by traditional methods, utilizing transcriptome data from oropharyngeal cancer (OC). We successfully reduced the data to 50 low-dimensional, biologically interpretable latent variables by training a variational autoencoder on high-dimensional gene expression matrices. By maintaining essential variation among samples, these latent traits enabled downstream modeling to reveal functional insights. A 50-dimensional embedding yielded the optimal balance between biological richness and training error when evaluating the reconstruction quality of the PEM across various latent dimensionalities (Figure 3.1). The model's capacity to delineate the underlying illness structure was emphasized by the UMAP display of the acquired embeddings, which distinctly segregated the OC subgroups (Figure 3.2).

Integrated Gradients were employed to quantify the contribution of each gene to each latent dimension, thereby enhancing the understanding of the biological relevance of these representations. The analysis revealed the presence of high-attribution gene sets that were not restricted to individual dimensions but were also enriched for key biological pathways, as identified through Gene Ontology and KEGG annotations (Figure 3.4). Several latent variables were associated with biological processes such as cell adhesion, immune signaling, and extracellular matrix remodeling—mechanisms commonly implicated in tumor progression. In many cases, high-contribution genes appeared recurrently across multiple latent dimensions, indicating that shared biological programs may be embedded within distinct transcriptomic patterns. These results confirmed that the latent space captured by the model reflects physiologically meaningful signals and provided justification for further examination of genes contributing across dimensions.

This study aimed to investigate the molecular intricacies of oropharyngeal cancer (OC) via a deep learning analytical framework that transcends the limitations of conventional differential gene expression techniques. Utilizing a probabilistic embedding model (PEM) grounded on a neural network framework, and subsequently applying gene attribution through integrated gradients, we identified 50 latent dimensions that encapsulate compressed, physiologically significant transcriptome patterns. The latent dimensions were enriched for specific gene programs and biological pathways (Figure 3.3, 3.4), uncovering concealed aspects of OC biology not addressed by conventional linear methods. RAP1GAP2 appeared as a notably consistent and discriminative component among the

genes contributing to these latent traits (**Figure 3.6**). Despite its robust latent-space attribution and efficacy as a single-gene classifier (AUPRC ≈ 0.77), RAP1GAP2 was not deemed significant in LFC in the differential expression study (**Figure 3.7C**). The disparity between statistical insignificance and biological significance underscores the fundamental value of our approach—deep generative models can reveal non-linear molecular determinants that traditional methods may overlook.

Our results align with and contribute to the existing knowledge in the subject. Researchers have long recognized that the Ras-related GTPase Rap1 and its regulators influence the adhesion and motility of cancer cells (Zhang et al. 2017). Active Rap1 signaling has been demonstrated to enhance the invasiveness of head and neck malignancies by inducing the production of β-catenin and MMP7 (Zhang et al. 2017). Conversely, the established Rap1 inactivator Rap1GAP (a paralog of RAP1GAP2) is recognized for its ability to inhibit Rap1-ERK signaling and tumor proliferation (Zhang et al. 2006). Our identification of RAP1GAP2 enhances this paradigm while introducing a novel element. RAP1GAP2 functions as a pro-invasion factor, whereas Rap1GAP broadly inhibits HNSCC growth (Zhang et al. 2006). Upon examining the entirety of the situation, this seeming contradiction becomes comprehensible: Rap1 regulators frequently exert disparate effects on various cell types (Zhang et al. 2017). Research indicates that Rap1GAP often inhibits invasion in various malignancies; but, in certain instances, elevated levels of Rap1GAP may enhance cellular invasiveness (Zhang et al. 2017). Our findings indicate that oropharyngeal carcinoma exemplifies a scenario in which RAP1GAP2, functioning in a specific cellular region, promotes cancer proliferation. This constitutes a novel discovery, as RAP1GAP2 has not been previously examined in oropharyngeal cancer; it was essentially an obscured driver identified by our latent-space profiling.

We identified additional latent drivers, including PDK3 and FABP4, that corroborate the biological validity of our methodology. PDK3 (pyruvate dehydrogenase kinase 3) is a recognized mediator of the Warburg effect and is increased in hypoxic malignancies, resulting in metabolic reprogramming and aggressive behavior (Lu et al. 2011). FABP4 (fatty acid–binding protein 4) facilitates tumor metastasis and treatment resistance by accelerating lipid transport and signaling in cancer cells (Sun and Zhao 2022). Our model appears to have encapsulated significant characteristics of cancer, such as metabolic plasticity and microenvironmental adaptation, alongside the Rap1 signaling axis. The presence of PDK3 and FABP4 among our principal latent genes demonstrates this. The

alignment of our data-driven discoveries with established cancer pathways corroborates the outcomes of our study. We have identified a novel driver (RAP1GAP2) and an accompanying array of genes implicated in oropharyngeal cancer invasion and demonstrated that deep neural profiling can uncover biologically significant targets overlooked by conventional techniques.

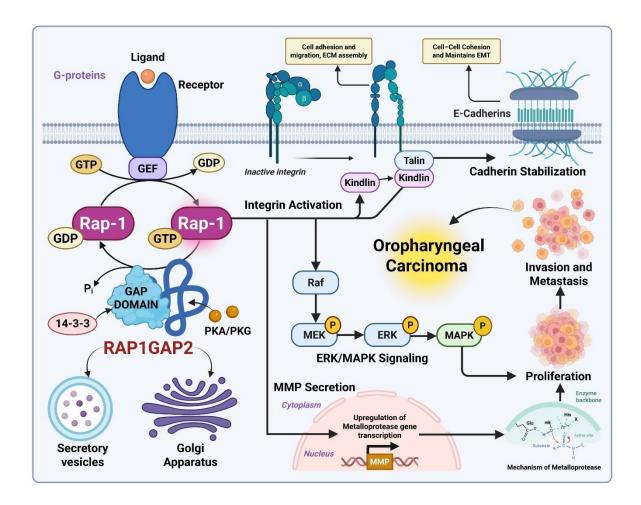


Figure 4.1: Schematic model illustrates the proposed role of RAP1GAP2 in promoting invasion and metastasis in OC. [Figure generated using Adobe Illustrator v27.8.1].

RAP1GAP2 is a GTPase-activating protein (GAP) for Rap1 (Johansen et al. 2023). It changes active GTP-bound Rap1 into an inactive GDP-bound state, which changes how cells stick together and send signals. Active Rap1 stabilizes integrins and E-cadherins, which helps cells stick together and keeps epithelial cells looking like epithelial cells (Price et al. 2004). RAP1GAP2 stops Rap1 from working, which breaks up these stable interactions and makes cells lose their ability to stick together. This is necessary for tumor cells to start moving and invading.

RAP1GAP2 inactivates Rap1, which not only stops adhesion but also stops Rap1 from stopping Ras–MAPK/ERK signaling. This makes the ERK pathway more active (Zhang et al. 2017). ERK signaling helps cells grow, move, and turn on invasive genes, such as matrix metalloproteinases (MMPs). This makes tumors even more aggressive (Mitra et al. 2008).

RAP1GAP2 also affects how tumors invade by changing how vesicles move around. It works with the synaptotagmin-like protein 1 (Slp1) and Rab27 complex to control secretory vesicles that come from the Golgi apparatus (Neumüller et al. 2009; Li et al. 2018). This interaction leads to the release of enzymes that break down the matrix, like MMP-2 and MMP-9, into the extracellular space. This makes it easier for tissues to break down and makes them more invasive (Mitra et al. 2008; Beroun et al. 2019).

So, RAP1GAP2 controls a coordinated, multi-dimensional invasion strategy: it weakens cellular adhesion, turns on pro-invasive ERK/MAPK signaling, and boosts Golgi's ability to secrete proteases (Guo et al. 2020). This integrated mechanism shows how RAP1GAP2 can help metastasis even though it acts as a Rap1 inhibitor. Future experiments can test whether changing the expression of RAP1GAP2 affects the strength of cell adhesion, the levels of ERK activation, and the release of invasive factors. This would confirm its many roles in the progression of oropharyngeal carcinoma. Notably, this latent driver effect of RAP1GAP2 is captured by our model despite its lack of prominence in linear analysis, indicating that its contribution, while subtle at the expression level, is indeed biologically significant. Overall, the identification of RAP1GAP2 through latent-space analysis—supported by attribution, classifier performance, and mechanistic plausibility—highlights both the biological relevance of this gene and the power of our approach to reveal novel drivers in oropharyngeal carcinoma.

4.2 Limitations of the Study

Based on integrative analyses of transcriptomic data, our study identifies RAP1GAP2 as a promising computationally predicted driver gene in oropharyngeal carcinoma (OC). To preserve a fair interpretation, a few restrictions must be noted.

First off, we didn't carry out functional tests to confirm RAP1GAP2's involvement in cellular functions like invasion and metastasis. Therefore, our results are still correlative, and there is no proof that RAP1GAP2 causes tumor behavior. Second, even with batch effect correction and gene harmonization, heterogeneity is introduced because we used retrospective integration of several public datasets from various platforms and clinical

subgroups. Variations in tumor subsite, treatment history, and HPV status could affect the latent features that are extracted. Third, some candidate genes (such as RAP1GAP2) showed only slight expression changes and might contribute to false positives because our machine learning pipeline gave predictive power precedence over statistical significance. Although this risk was reduced by cross-validation, biological significance still needs to be ascertained through experimentation. Furthermore, we were unable to assess the prognostic significance of the identified drivers due to the restricted availability of comprehensive clinical endpoints, such as survival and metastasis data. Lastly, we only looked at the mRNA level, leaving out other regulatory mechanisms that could have a significant impact on RAP1GAP2's function, like mutations, epigenetic changes, and post-translational events. All of these drawbacks highlight the necessity of additional research that includes multi-omic integration and experimental validation in order to completely clarify the biological and therapeutic significance of our findings.

4.3 Future Directions

Our results provide several avenues for additional research to confirm and broaden the biological significance of RAP1GAP2 in oropharyngeal carcinoma (OC). First and foremost, functional validation is essential. RAP1GAP2's function would be directly tested by knocking down or overexpressing it in OC cell lines and evaluating cell invasion, Rap1-GTP activity, and downstream signaling (such as ERK/MAPK and MMP secretion). Its pro-metastatic role may be further supported by in vivo models. RAP1GAP2's value as a biomarker may be defined clinically by assessing its expression in larger patient cohorts or tissue arrays, which may show associations with tumor stage, metastasis, HPV status, or prognosis.

From a therapeutic standpoint, RAP1GAP2's downstream pathways, like MAPK signaling or Rab27-mediated secretion, provide actionable targets, even though directly targeting it may be challenging. Inhibitors of these effectors in RAP1GAP2-high models may be investigated in future research. To find cross-layer or context-specific drivers, our deep profiling framework can be methodologically extended to other cancers or combined with proteomic and epigenetic data. New patterns may be found by applying the pipeline to datasets related to head and neck cancer that are HPV-stratified.

Lastly, more research is necessary to fully understand the network of interactions between latent drivers such as RAP1GAP2, PDK3, and FABP4. Studies on gene perturbation and

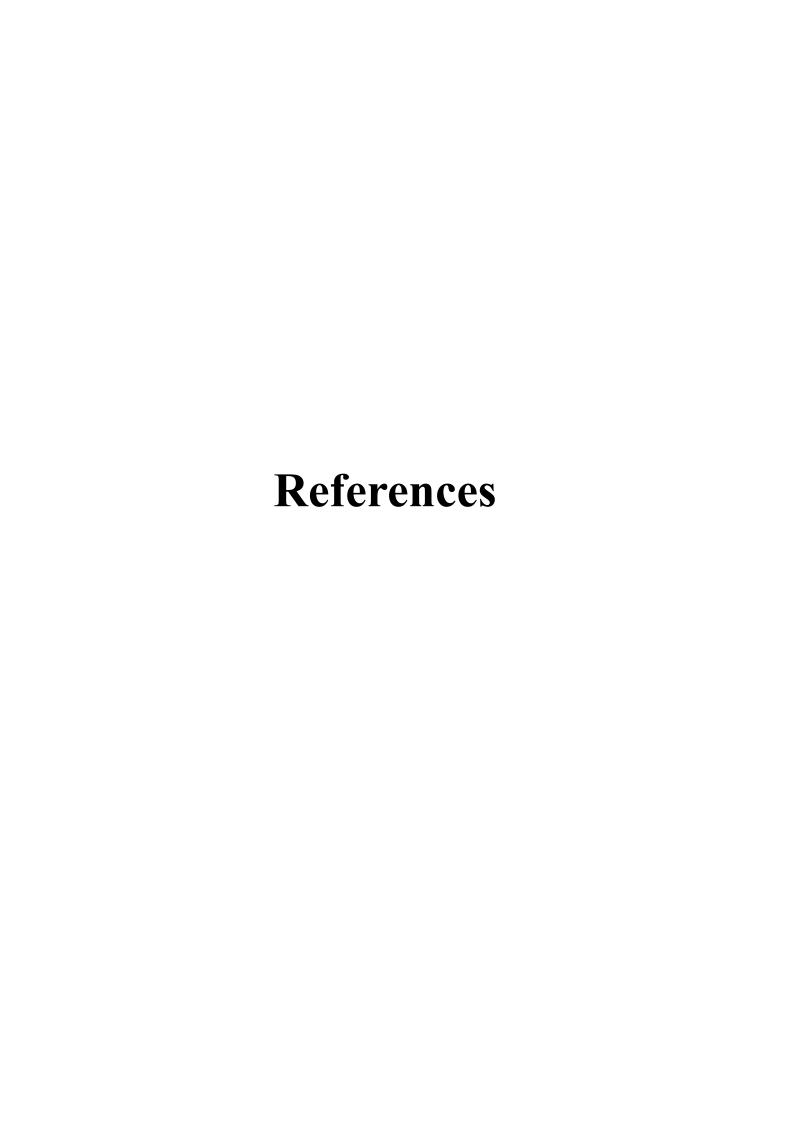
systems biology may shed light on whether these genes are linked by common regulators (like hypoxia) and provide combinatorial intervention points. Collectively, these avenues will enhance our comprehension of the function of RAP1GAP2 and facilitate the realization of our computational approach's translational potential.

Chapter Five

Conclusion

5. Conclusion

In summary, this study demonstrates that new cancer-causing factors can be identified by combining deep learning with high-dimensional transcriptome data. We discovered that RAP1GAP2, a gene that is rarely observed to exhibit differential expression, might play a secret role in regulating the invasion of other tissues by oropharyngeal cancer. This new knowledge links biological mechanisms to data-driven modeling. It implies that these cancers become more aggressive due to dysregulation of Rap1 signaling (via RAP1GAP2), as well as modifications in metabolism and secretion. Our discussion demonstrates how this finding aligns with our current understanding of cancer pathways and provides a fresh perspective on and method for testing metastasis. We are one step closer to improved prognostic tools and customized treatments for oral cancers now that RAP1GAP2 is recognized as a molecular driver (Zhang et al. 2006). Ultimately, the study's methodology and findings highlight the significance of looking beyond conventional research to comprehend the intricate genetic elements influencing cancer behavior. This makes it possible to conduct cancer genomics research using more comprehensive and innovative methods.



- Abbas, M. and El-Manzalawy, Y. 2020. Machine learning based refined differential gene expression analysis of pediatric sepsis. BMC Medical Genomics 13(1). DOI: https://doi.org/10.1186/s12920-020-00771-4
- **2.** Balagopalan, S., Ashok, S. and Mohandas, K.P. 2009. GSEA. Journal of Electrical Systems 5(4).
- 3. Behdenna, A., Colange, M., Haziza, J., Gema, A., Appé, G., Azencott, C.A. and Nordor, A. 2023. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. BMC Bioinformatics 24(1). DOI: https://doi.org/10.1186/s12859-023-05578-5
- **4.** Beroun, A., Mitra, S., Michaluk, P., Pijet, B., Stefaniuk, M. and Kaczmarek, L. 2019. MMPs in learning and memory and neuropsychiatric disorders. Cellular and Molecular Life Sciences 76(16). DOI: https://doi.org/10.1007/s00018-019-03180-8
- **5.** Blighe, K., Rana, S. and Lewis, M. 2021. EnhancedVolcano version 1.10.0: Publication-ready volcano plots with enhanced colouring and labeling. R-Package.
- **6.** Bro, R. and Smilde, A.K. 2014. Principal component analysis. Analytical Methods 6(9). DOI: https://doi.org/10.1039/c3ay41907j
- 7. Carbon, S. et al. 2017. Expansion of the gene ontology knowledgebase and resources: The gene ontology consortium. Nucleic Acids Research 45(D1). DOI: https://doi.org/10.1093/nar/gkw1108
- **8.** Chollet, F. 2015. Keras: The Python Deep Learning library. Keras. Io.
- Elgeldawi, E., Sayed, A., Galal, A.R. and Zaki, A.M. 2021. Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. Informatics 8(4). DOI: https://doi.org/10.3390/informatics8040079
- **10.** Ferreira, J.A. and Zwinderman, A.H. 2006. On the Benjamini-Hochberg method. Annals of Statistics 34(4). DOI: https://doi.org/10.1214/009053606000000425
- 11. Filus, K. and Domańska, J. 2023. Software vulnerabilities in TensorFlow-based deep learning applications. Computers and Security 124. DOI: https://doi.org/10.1016/j.cose.2022.102948
- **12.** Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y. and Hu, L. 2020. ERK/MAPK signalling pathway and tumorigenesis (Review). Experimental and Therapeutic Medicine. DOI: https://doi.org/10.3892/etm.2020.8454
- **13.** Hadley Wickham, Romain François, Lionel Henry and Kirill Müller. 2020. A grammar of data manipulation [R package dplyr version 1.0.0].

- **14.** Janizek, J.D. et al. 2023. PAUSE: principled feature attribution for unsupervised gene expression analysis. Genome Biology 24(1). DOI: https://doi.org/10.1186/s13059-023-02901-4
- **15.** Jassal, B. et al. 2020. The reactome pathway knowledgebase. Nucleic Acids Research 48(D1). DOI: https://doi.org/10.1093/nar/gkz1031
- **16.** Johansen, K.H., Golec, D.P., Okkenhaug, K. and Schwartzberg, P.L. 2023. Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion. Trends in Immunology 44(11). DOI: https://doi.org/10.1016/j.it.2023.09.002
- 17. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. and Ishiguro-Watanabe, M. 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research 51(D1). DOI: https://doi.org/10.1093/nar/gkac963
- **18.** Kassambara, A. and Mundt, F. 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Package Version 1.0.7. R package version.
- **19.** Lechner, M., Liu, J., Masterson, L. and Fenton, T.R. 2022. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nature Reviews Clinical Oncology 19(5). DOI: https://doi.org/10.1038/s41571-022-00603-7
- 20. Li, Z., Fang, R., Fang, J., He, S. and Liu, T. 2018. Functional implications of Rab27 GTPases in Cancer. Cell Communication and Signaling 16(1). DOI: https://doi.org/10.1186/s12964-018-0255-9
- **21.** Li, Z., Fang, R., Fang, J., He, S. and Liu, T. 2018. Functional implications of Rab27 GTPases in Cancer. Cell Communication and Signaling 16(1). DOI: https://doi.org/10.1186/s12964-018-0255-9
- **22.** Love, M.I., Huber, W. and Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), p.550. https://doi.org/10.1186/s13059-014-0550-8
- **23.** Lu, C.W. et al. 2011. Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. American Journal of Pathology 179(3). DOI: https://doi.org/10.1016/j.ajpath.2011.05.050
- **24.** McKinney, W. 2011. pandas: a Foundational Python Library for Data Analysis and Statistics. Python for High Performance and Scientific Computing.
- **25.** Mitra, R.S. et al. 2008. Rap1GAP promotes invasion via induction of matrix metalloproteinase 9 secretion, which is associated with poor survival in low N-stage

- squamous cell carcinoma. Cancer Research 68(10). DOI: https://doi.org/10.1158/0008-5472.CAN-07-2755
- **26.** Neumüller, O., Hoffmeister, M., Babica, J., Prelle, C., Gegenbauer, K. and Smolenski, A.P. 2009. Synaptotagmin-like protein 1 interacts with the GTPase-activating protein Rap1GAP2 and regulates dense granule secretion in platelets. Blood 114(7). DOI: https://doi.org/10.1182/blood-2008-05-155234
- 27. Pan, T., Zhao, J., Wu, W. and Yang, J. 2020. Learning imbalanced datasets based on SMOTE and Gaussian distribution. Information Sciences 512. DOI: https://doi.org/10.1016/j.ins.2019.10.048
- 28. Peterson, H., Kolberg, L., Raudvere, U., Kuzmin, I. and Vilo, J. 2020. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g: Profiler. F1000Research 9. DOI: https://doi.org/10.12688/f1000research.24956.2
- **29.** Price, L.S., Hajdo-Milasinovic, A., Zhao, J., Zwartkruis, F.J.T., Collard, J.G. and Bos, J.L. 2004. Rap1 regulates E-cadherin-mediated cell-cell adhesion. Journal of Biological Chemistry 279(34). DOI: https://doi.org/10.1074/jbc.M404917200
- **30.** Rampášek, L., Hidru, D., Smirnov, P., Haibe-Kains, B. and Goldenberg, A. 2019. Dr.VAE: Improving drug response prediction via modeling of drug perturbation effects. Bioinformatics 35(19). DOI: https://doi.org/10.1093/bioinformatics/btz158
- **31.** Ri, J.H. and Kim, H. 2020. G-mean based extreme learning machine for imbalance learning. Digital Signal Processing: A Review Journal 98. DOI: https://doi.org/10.1016/j.dsp.2019.102637
- **32.** Sabbatini, G. and Manganaro, L. 2023. On potential limitations of differential expression analysis with non-linear machine learning models. EMBnet.journal 28. DOI: https://doi.org/10.14806/ej.28.0.1035
- **33.** Sinaga, K.P. and Yang, M.S. 2020. Unsupervised K-means clustering algorithm. IEEE Access 8. DOI: https://doi.org/10.1109/ACCESS.2020.2988796
- **34.** Stekhoven, D.J. and Bühlmann, P. 2012. Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1). DOI: https://doi.org/10.1093/bioinformatics/btr597
- **35.** Sun, N. and Zhao, X. 2022. Therapeutic Implications of FABP4 in Cancer: An Emerging Target to Tackle Cancer. Frontiers in Pharmacology 13. DOI: https://doi.org/10.3389/fphar.2022.948610

- **36.** Sundararajan, M., Taly, A. and Yan, Q. 2017. Axiomatic attribution for deep networks. In: 34th International Conference on Machine Learning, ICML 2017.
- 37. Tian, Y., Fan, B. and Wu, F. 2017. L2-Net: Deep learning of discriminative patch descriptor in Euclidean space. In: Proceedings 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. DOI: https://doi.org/10.1109/CVPR.2017.649
- **38.** Tolstikhin, I. et al. 2021. MLP-Mixer: An all-MLP Architecture for Vision. In: Advances in Neural Information Processing Systems.
- **39.** Wang, Y., Xiao, Z. and Cao, G. 2022. A convolutional neural network method based on Adam optimizer with power-exponential learning rate for bearing fault diagnosis. Journal of Vibroengineering 24(4). DOI: https://doi.org/10.21595/jve.2022.22271
- **40.** Waskom, M. 2021. seaborn: statistical data visualization. Journal of Open Source Software 6(60). DOI: https://doi.org/10.21105/joss.03021
- **41.** Way, G.P., Zietz, M., Rubinetti, V., Himmelstein, D.S. and Greene, C.S. 2020. Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations. Genome Biology 21(1). DOI: https://doi.org/10.1186/s13059-020-02021-3
- **42.** Wazery, Y.M., Saleh, M.E. and Ali, A.A. 2023. An optimized hybrid deep learning model based on word embeddings and statistical features for extractive summarization. Journal of King Saud University Computer and Information Sciences 35(7). DOI: https://doi.org/10.1016/j.jksuci.2023.101614
- **43.** Wolf, F.A., Angerer, P. and Theis, F.J. 2018. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biology 19(1). DOI: https://doi.org/10.1186/s13059-017-1382-0
- **44.** Zhang, Y.L., Wang, R.C., Cheng, K., Ring, B.Z. and Su, L. 2017. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biology and Medicine 14(1). DOI: https://doi.org/10.20892/j.issn.2095-3941.2016.0086
- **45.** Zhang, Z. et al. 2006. Rap1GAP inhibits tumor growth in oropharyngeal squamous cell carcinoma. American Journal of Pathology 168(2). DOI: https://doi.org/10.2353/ajpath.2006.050132

Appendices

Appendix I



Appendix II

Selected Latent Variable-Enriched Pathways

Pathway Name	P-value				Precision	Recall	Late
		Term Size	ry Size	Intersection			nt Nod e
		Ter	Query	Inte			
regulation of	0.02361861361	45	1	5	0.3125	0.01094091903	7
nervous system development	51001	7	6			71991	
DNA integration	0.02879220888 18914	10	1 5	2	0.1333333333 33333	0.2	9
Glucagon	0.01346418080	10	1	3	0.3	0.02803738317	18
signaling pathway	35551	7	0			757	
Cushing syndrome	0.04995698970 09377	15 3	1	3	0.27272727272 72727	0.01960784313 72549	19
Vibrio cholerae	0.02465554553	50	6	2	0.33333333333	0.04	20
infection	25596				33333		
Golgi lumen	0.03705341619	13	1	2	0.15384615384	0.15384615384	20
acidification	63728		3		61538	61538	
Cushing syndrome	0.04995698970 09377	15 3	1	3	0.27272727272 72727	0.01960784313 72549	23
tRNA metabolic	0.04142636926	21	1	4	0.222222222	0.01904761904	25
process	39973	0	8		22222	7619	
ECM-receptor	0.01014505429	89	1	3	0.27272727272	0.03370786516	31
interaction	3642		1		72727	85393	
Glyoxylate and dicarboxylate metabolism	0.01218818077 7088	30	7	2	0.28571428571 42857	0.066666666666666666666666666666666666	34
cellular response to 2,3,7,8- tetrachlorodibenzo dioxine	0.00384846936 49248	4	1 5	2	0.1333333333 33333	0.5	41
response to 2,3,7,8-tetrachlorodibenzo dioxine	0.01792993003 13183	8	1 5	2	0.1333333333 33333	0.25	41
Base excision repair	0.02636013607 27707	44	7	2	0.28571428571 42857	0.04545454545 45454	42
RNA degradation	0.04121332865 59642	79	5	2	0.4	0.02531645569 62025	43
neuromuscular junction development	0.02153001876 57582	54	1 9	3	0.15789473684 21052	0.055555555 55555	47
regulation of response to external stimulus	0.03907320842 49658	10 82	1 9	7	0.36842105263 15789	0.00646950092 42144	47

Appendix III

GSEA Info for Top 50 Pathways

Term	ES	NES	NOM p-val	FDR q-val	FWE R p- val	Tag %	Gene %	late nt
Ribosome	- 0.2538932143878 554	- 3.1423241808411 97	0.0	0.0	0.0	64/112	30.62 %	0
Oxidative phosphorylati on	- 0.2407197097865 659	- 2.6116739216508 73	0.0	0.0	0.0	70/86	56.60 %	0
Thermogenes is	- 0.1589509040115 02	- 2.4056937312337 16	0.0	0.0	0.0	87/159	37.50 %	0
Taste transduction	- 0.3048429308211 678	- 2.3501719140301 35	0.0	0.0	0.0	26/32	50.10 %	0
Epstein-Barr virus infection	0.0556416038563 949	0.8350148290636 356	0.6034482758620 69	1.0	1.0	115/17 9	59.99 %	0
Oxidative phosphorylati on	0.1142496981063 722	1.2249093076286 393	0.1525423728813 559	0.7361948188317 199	1.0	52/86	50.47 %	1
Epstein-Barr virus infection	- 0.0756836049783 082	- 1.1357622653143 702	0.3448275862068 966	0.6369253352905 851	1.0	62/179	25.54 %	1
Thermogenes	0.0748845499516 672	1.0927577331087 608	0.2948717948717 949	0.8631416491166 021	1.0	134/15	77.74 %	1
Ribosome	0.0936709992384 217	1.0621660292973 25	0.3787878787878 788	0.8778851648488 162	1.0	24/112	13.53	1
Taste transduction	- 0.1334816003429 303	- 0.9706323778105 916	0.444444444444 444	0.7495123224441 576	1.0	23/32	57.23 %	1
Ribosome	- 0.3256476601525 599	- 4.0225516504651 03	0.0	0.0	0.0	82/112	40.25 %	2
Oxidative phosphorylati on	- 0.2609235596349 908	- 2.8374924290565 54	0.0	0.0	0.0	53/86	34.95 %	2
Epstein-Barr virus infection	- 0.1484226108201 942	- 2.3752365815471 905	0.0	0.0057049714751 426	0.06	88/179	33.48	2
Thermogenes is	- 0.0882268099454 029	- 1.3402073272558 992	0.0975609756097 561	0.2926098272734 442	1.0	113/15 9	61.71 %	2
Taste transduction	- 0.1332930651252 92	- 0.9230062434315 842	0.488888888888 889	0.6908604815084 033	1.0	13/32	26.30 %	2
Oxidative phosphorylati on	- 0.3275733015959 381	- 3.4001191113909 53	0.0	0.0	0.0	67/86	44.66 %	3
Ribosome	- 0.2617170297897 189	- 3.2861659380353 325	0.0	0.0	0.0	87/112	51.10 %	3
Epstein-Barr virus infection	- 0.1059999709738 502	- 1.8620948304408 6	0.0	0.0579973024510 487	0.56	88/179	37.69 %	3
Thermogenes	- 0.1212049069795 281	- 1.8205604074176 376	0.0	0.0682293846797 823	0.64	72/159	32.36 %	3
Taste transduction	- 0.2244361798488 704	- 1.5172067052040 372	0.0256410256410 256	0.1659770744115 658	1.0	14/32	19.96 %	3
Ribosome	- 0.2232951808963 537	- 2.8364443956286 745	0.0	0.0	0.0	79/112	47.23 %	4
Oxidative phosphorylati on	- 0.1384100937509 499	- 1.4848982031800 35	0.025	0.3228428314904 074	0.99	72/86	69.16 %	4
Taste transduction	- 0.1599142914597 349	- 1.1002297033883 486	0.4193548387096 774	0.6523335661482 501	1.0	27/32	67.63 %	4
Thermogenes	0.0627232772891 256	0.8261903765388 551	0.7179487179487 18	0.8583973003841 902	1.0	139/15	82.01 %	4

Epstein-Barr virus infection	0.0475756092253 786	0.6652826145585 135	0.8552631578947 368	0.9510038374797 59	1.0	101/17 9	53.24 %	4
Epstein-Barr virus infection	-0.2321369172794	- 3.8752412064043 895	0.0	0.0	0.0	76/179	18.53 %	5
Ribosome	- 0.2331264509898 629	3.0373310393102 21	0.0	0.0	0.0	87/112	53.96 %	5
Oxidative phosphorylati on	- 0.2113046485189 271	- 2.5688251815532 457	0.0	0.0008765821089 591	0.01	68/86	57.49 %	5
Thermogenes is	0.0767866793683 777	1.1101762451219 783	0.3225806451612 903	1.0	1.0	136/15 9	78.48 %	5
Taste transduction	- 0.1278100605290 263	- 0.8108845295541 842	0.666666666666666666666666666666666666	0.8161653728339 712	1.0	21/32	51.73 %	5
Ribosome	- 0.3293229152882 386	- 4.4509337108677 19	0.0	0.0	0.0	68/112	27.16 %	6
Oxidative phosphorylati on	- 0.2803922514121 083	2.9523157014033 363	0.0	0.0	0.0	70/86	52.93 %	6
Epstein-Barr virus infection	- 0.1612168197723 371	- 2.8399022496034	0.0	0.0	0.0	80/179	27.60 %	6
Thermogenes	- 0.1045309528713 468	- 1.6119871628753 508	0.0526315789473 684	0.1086496401862 565	0.98	102/15 9	52.93 %	6
Taste transduction	- 0.0803663969469 782	- 0.5944365699407 909	0.9473684210526 316	0.9504021447721 18	1.0	22/32	59.83 %	6
Epstein-Barr virus infection	- 0.1065109835343 221	- 1.7441063627334 84	0.0	0.1176882575158 902	0.78	49/179	15.52 %	7
Ribosome	0.1120774229219 907	1.2798902470341 21	0.1076923076923 077	0.7245521177194 651	1.0	58/112	42.30	7
Oxidative phosphorylati on	0.1081615732831 24	1.1195845010506 99	0.3442622950819 672	0.9349297823532 704	1.0	75/86	77.11 %	7
Thermogenes is	0.0715029801756 083	1.0268194922167 353	0.4637681159420 29	0.9815923459967 548	1.0	129/15	75.05 %	7
Taste transduction	0.1249958881658 193	0.8067070959874 992	0.6229508196721 312	1.0	1.0	23/32	61.00	7
Thermogenes is	0.1367508982822 331	1.9891285890048 445	0.0	0.1958251871161 404	0.47	88/159	42.83	8
Ribosome	0.1454806205398 361	1.7462592473255 552	0.0408163265306 122	0.3844675970986 771	0.87	84/112	61.29	8
Oxidative phosphorylati on	0.1309589399054 042	1.3715003663606 282	0.066666666666666666666666666666666666	0.7863250756787 104	1.0	31/86	24.00	8
Epstein-Barr virus infection	- 0.0775275389761 539	- 1.2408344861416 116	0.1379310344827 586	0.4750103126804 719	1.0	105/17 9	50.05 %	8
Taste transduction	- 0.1302957666471 551	- 0.8763585423530 01	0.5769230769230 769	0.8278352697259 158	1.0	12/32	23.35	8
Thermogenes is	- 0.1337794037804 547	- 2.1003029810119 35	0.0	0.0240763092961 898	0.22	50/159	16.67 %	9
Oxidative phosphorylati on	- 0.1564861632838 065	- 1.6899188229068 458	0.0	0.1199516123863 745	0.88	29/86	16.56 %	9
Epstein-Barr virus infection	- 0.0805443311691 613	- 1.3345202650671 202	0.125	0.3780101242756 428	1.0	74/179	31.81	9
Ribosome	- 0.0944119478879 425	- 1.2113882241551 532	0.22222222222 222	0.5218758215459 836	1.0	24/112	10.81	9
Taste	0.1425123191907	0.8988740228825 484	0.55555555555	1.0	1.0	8/32	12.37	9
Ribosome	56 - 0.1971230410161 868	- 2.6788469240337 296	556	0.0025584472871 636	0.01	72/112	% 43.60 %	10
Epstein-Barr virus infection	- 0.1636372192150 541	- 2.5400057344093 52	0.0	0.0031980591089 545	0.02	85/179	29.82 %	10
Oxidative phosphorylati on	0.1500924419982 399	1.5510957038556 674	0.0307692307692 307	0.3611661477497 877	0.99	52/86	46.85 %	10
Thermogenes is	0.1123031774550 938	1.5077141535503 211	0.0882352941176 47	0.4161262137117 119	0.99	90/159	46.85	10
Taste	0.1335782743774	0.8638481365202	0.65625	0.9752898173595	1.0	21/32	53.91	10

Epstein-Barr	_	-	0.0	0.0014575470250	0.01	82/179	28.95	11
virus infection	0.1548800515752 707	2.4310472892938 32		698			%	
Oxidative phosphorylati on	0.1182173254761 076	1.1944193154577 427	0.2622950819672 131	0.6175221922037 823	1.0	66/86	65.98 %	11
Thermogenes is	0.0840036749263 786	1.1186199550959 44	0.28125	0.6860132448708 288	1.0	95/159	52.77 %	11
Ribosome	- 0.0782791132880 562	- 1.0479330673375 782	0.3823529411764 705	0.5760692258123 907	1.0	71/112	54.18	11
Taste transduction	- 0.1423537900733 46	- 0.9466568114068 772	0.4883720930232 558	0.7009968306571 455	1.0	12/32	21.73	11
Ribosome	- 0.1590080895545 469	- 2.1120351349357 41	0.0	0.0280182897168 985	0.25	82/112	56.27 %	12
Oxidative phosphorylati on	- 0.1324742005360 538	- 1.4618884159029 404	0.0810810810810 81	0.2967726739750 436	1.0	61/86	56.39 %	12
Epstein-Barr virus infection	- 0.0828798991794 913	- 1.3064769028044 512	0.1304347826086 956	0.3912372091377 831	1.0	61/179	24.35 %	12
Taste transduction	- 0.1640753539772 809	- 1.2020766986467 593	0.2285714285714 285	0.4926908484063 849	1.0	9/32	10.31	12
Thermogenes is	0.0430498109286 673	0.6098984184263 628	0.9350649350649 35	1.0	1.0	138/15 9	83.46 %	12
Thermogenes is	0.1106799758428 105	1.5528444508611 32	0.1212121212121 212	0.5010353563167 75	1.0	84/159	43.54	13
Taste	0.1898271430862	1.2384391552528	0.2	0.8120975144105	1.0	8/32	7.70%	13
Ribosome	881 0.1010080676659	35 1.1588001452808	0.2816901408450	445 0.7224988615683	1.0	57/112	42.36	13
Oxidative phosphorylati on	86 0.0893802743756 362	16 0.9178164713944 112	704 0.5151515151515 151	561 0.7740193224552 736	1.0	75/86	% 79.11 %	13
Epstein-Barr virus infection	- 0.0369440849574 122	- 0.5773223972275 305	1.0	0.9895624758934 112	1.0	162/17 9	86.23 %	13
Ribosome	- 0.2499602236106 113	3.4028110229668 32	0.0	0.0	0.0	70/112	36.31 %	14
Oxidative phosphorylati on	- 0.2533110757351 272	2.8823733635911 024	0.0	0.0	0.0	58/86	40.98 %	14
Epstein-Barr virus infection	- 0.1403322253608 299	2.5636151130605 28	0.0	0.0026311111111 111	0.01	89/179	34.09 %	14
Thermogenes is	- 0.0782485007267 294	- 1.1257550331930 222	0.2941176470588 235	0.5246178861788 618	1.0	110/15 9	60.17 %	14
Taste transduction	0.1120801633981 848	0.7121301279549 598	0.8653846153846 154	1.0	1.0	29/32	79.91 %	14
Epstein-Barr virus infection	- 0.1564731165548 349	- 2.6231667792912 323	0.0	0.0	0.0	58/179	15.80	15
Oxidative phosphorylati on	- 0.1427779365221 995	- 1.5459902681911 917	0.0714285714285 714	0.1606630509590 157	1.0	45/86	37.13 %	15
Ribosome	- 0.0835052583452 637	- 1.0457258246958 143	0.4473684210526 316	0.6350407605087 761	1.0	64/112	47.89 %	15
Thermogenes is	0.0685810193717 143	0.9241792850269 684	0.609375	0.9146829405107 706	1.0	86/159	48.40 %	15
Taste transduction	0.1089751365711 126	- 0.8046743421424 567	0.7021276595744 681	0.8587691414210 2	1.0	22/32	56.79	15
Oxidative phosphorylati on	- 0.1934690155536 926	- 2.2579171436828 2	0.0	0.0135284910529 21	0.1	70/86	61.20 %	16
Thermogenes is	0.1199857130176 65	2.0590114667603 91	0.0	0.0243252675663 099	0.25	118/15 9	61.23	16
Ribosome	- 0.0986916187640 376	- 1.2343055799625 748	0.2413793103448 276	0.5549282964592 411	1.0	93/112	72.43 %	16
Epstein-Barr virus infection	- 0.0735439406826 843	1.2010141513757 822	0.25	0.5515253606328 525	1.0	121/17 9	59.04 %	16
Taste transduction	- 0.1417973572809 813	0.9239386376720 244	0.6538461538461 539	0.8495865697820 095	1.0	15/32	31.04 %	16

D.11	1		T	0.0402045610225		06/110	61.00	1.5
Ribosome	0.1429843414461 468	1.9351322203883 43	0.0	0.0402945619335 347	0.44	86/112	61.80	17
Epstein-Barr virus infection	- 0.0989803694223 771	- 1.6377537736470 795	0.0	0.1405948784347 576	0.95	86/179	37.03 %	17
Oxidative phosphorylati on	- 0.1321516800386 444	- 1.5503137660883 377	0.0294117647058 823	0.1873047842836 362	0.98	47/86	40.21 %	17
Thermogenes is	- 0.0495010447489 337	- 0.7532720687120 83	0.8709677419354 839	0.9325568175837 132	1.0	80/159	44.25 %	17
Taste transduction	0.0837504809450 444	0.5391166734889 357	1.0	0.9862752920198 86	1.0	18/32	49.33	17
Ribosome	- 0.2300643695538 789	3.0326377472614 51	0.0	0.0	0.0	67/112	36.08 %	18
Oxidative phosphorylati on	- 0.2258420027873 637	- 2.4269696641982 08	0.0	0.0030002293168 904	0.03	61/86	47.80 %	18
Epstein-Barr virus infection	- 0.1634367130823 65	- 2.3127360201179 96	0.0	0.0060671303963 784	0.07	66/179	19.74 %	18
Thermogenes is	0.0540860555409	0.8808549381934	0.6428571428571 429	0.7158308325876 414	1.0	137/15	80.28 %	18
Taste	017 0.0903422763299	389 0.5715602775591	0.9423076923076	0.9854396948327	1.0	12/32	29.38	18
transduction Ribosome	656 - 0.2865315189205	783 - 3.5741418374315	924	0.0	0.0	80/112	% 41.74 %	19
Oxidative phosphorylati	287 - 0.2284104905830	392 - 2.4631593708013	0.0	0.0	0.0	40/86	22.24	19
on Epstein-Barr virus infection	- 0.1084580718550 667	453 - 1.9171496093342 697	0.0	0.0473985890652 557	0.4	77/179	30.61	19
Thermogenes is	- 0.0895152851569 006	1.3276471046020	0.1363636363636 363	0.4203445605884 63	1.0	132/15 9	73.22 %	19
Taste	0.1926586094746	1.1079070707887	0.3859649122807	0.8063496076781	1.0	30/32	74.82	19
Epstein-Barr virus	- 0.0853369011310	402 - 1.5479124740309	017 0.03030303030303 303	06 0.2999792957090 357	0.97	46/179	% 15.94 %	20
infection Ribosome	599 - 0.1077871147797	584 - 1.3732178053318	0.066666666666666666666666666666666666	0.3707169657065 273	1.0	59/112	40.58	20
Taste transduction	501 - 0.1473393589157 44	371 - 1.0153596695405 562	0.472222222222 222	0.6979608190464 14	1.0	12/32	21.09	20
Thermogenes	0.0542222308163 235	0.7571389446423 754	0.786666666666 666	0.9763971347870 776	1.0	150/15	89.39 %	20
	0.0704483502934 994	0.7206262365493 948	0.8235294117647 058	0.9541908068839 632	1.0	84/86	90.89	20
Ribosome	0.2275438043622 52	2.5616655165777 05	0.0	0.0061374558508 482	0.01	72/112	42.71 %	21
Epstein-Barr virus infection	- 0.1441302848400 509	- 2.3249466046355 44	0.0	0.0037351456909 816	0.05	112/17 9	47.05 %	21
Taste transduction	0.2050893693918 116	1.3499798123440 814	0.1639344262295 081	1.0	1.0	31/32	76.55 %	21
Oxidative phosphorylati on	- 0.1140775226843 5	- 1.2261204071398 637	0.2258064516129 032	0.3921902975530 735	1.0	28/86	20.10	21
Thermogenes	- 0.0423312481418 022	- 0.7048522598483 786	0.9354838709677 42	0.9195708976744 42	1.0	152/15 9	91.18 %	21
Epstein-Barr virus infection	- 0.1040991072613 12	- 1.5395196576693 624	0.08	0.1372225279765 18	0.99	38/179	9.71%	22
Ribosome	- 0.1188469970281 153	- 1.5179883663741 862	0.066666666666666666666666666666666666	0.1478504771584 324	0.99	32/112	15.52 %	22
Oxidative phosphorylati on	- 0.1063207806531 286	- 1.2234510409142 016	0.1666666666666666666666666666666666666	0.3499987708812 442	1.0	64/86	62.78 %	22
Taste transduction	- 0.1162346220625 998	- 0.8115098576982 108	0.6571428571428 571	0.7833040746558 256	1.0	17/32	39.94 %	22
Thermogenes is	0.0308342620424 767	0.4293938133054 199	1.0	0.9970842273202 398	1.0	29/159	16.15 %	22

Epstein-Barr virus	- 0.1490222125794	- 2.4517198895361	0.0	0.0081440791451 449	0.04	94/179	36.77	23
infection Oxidative	351	614	0.0	0.0470320570632	0.42	71/86	63.12	23
phosphorylati on	0.1900501123715 608	1.9093101811763 79		122	02	71700	%	23
Taste transduction	- 0.1815968266524 949	- 1.3009534103446 785	0.1428571428571 428	0.3487975389103 511	1.0	10/32	12.03	23
Thermogenes is	- 0.0755688546724 218	1.0832749743737 218	0.3030303030303 03	0.5208393115793 502	1.0	61/159	29.92 %	23
Ribosome	0.0520079995085 884	0.6413917946548 4	0.8679245283018 868	0.9554250706830 07	1.0	53/112	43.18 %	23
Oxidative phosphorylati on	- 0.2140088342006 968	2.5581159053371 945	0.0	0.0010142228443 316	0.01	46/86	31.19	24
Epstein-Barr virus infection	- 0.1580411043735 501	- 2.5502780822096 85	0.0	0.0009466079880 428	0.01	60/179	16.72 %	24
Taste transduction	- 0.1907365919825 491	- 1.2939274158627 64	0.2156862745098 039	0.3142951241198 439	1.0	17/32	32.98 %	24
Ribosome	- 0.0860341248910 368	- 1.1004974235817 673	0.3103448275862 069	0.4815245370754 795	1.0	106/11	85.90 %	24
Thermogenes is	- 0.0711413956891 996	- 1.0751266704488 225	0.333333333333333333333333333333333333	0.5077702335860 602	1.0	117/15 9	65.75 %	24
Thermogenes	0.1659622741611 206	2.2467535634369 544	0.0	0.0411352253756 26	0.17	116/15 9	57.68 %	25
Oxidative phosphorylati on	0.1888723510224 07	2.1665786495591 65	0.0	0.0467445742904 841	0.25	40/86	29.28 %	25
Ribosome	- 0.1565338198474 687	- 1.8607252802865 64	0.0285714285714 285	0.1290420066485 343	0.64	69/112	44.77 %	25
Taste transduction	- 0.1665415002572 56	- 1.2417514094893 585	0.1489361702127 659	0.5870489573889 394	1.0	11/32	16.31	25
Epstein-Barr virus infection	- 0.0471492858169 478	- 0.7532115728269 66	0.888888888888 888	0.9572471118372 036	1.0	148/17 9	77.11 %	25
Epstein-Barr virus infection	- 0.1120298340814 006	- 2.0146072424615 937	0.0	0.0252861368312 757	0.23	103/17 9	44.77 %	26
Oxidative phosphorylati on	- 0.1609719325626 107	- 1.7046833340244 654	0.03125	0.1078765707671 957	0.75	44/86	33.41	26
Ribosome	- 0.1061645417419 538	- 1.3642996693988 605	0.15	0.3313058609825 103	1.0	73/112	53.04 %	26
Taste transduction	0.1592193386692 686	1.0458250483076	0.3461538461538 461	0.9616015093405 912	1.0	10/32	17.21	26
Thermogenes	0.0563497911713 277	0.7360008639741 472	0.8260869565217 391	0.9576472894762 056	1.0	90/159	52.59 %	26
Ribosome	- 0.1964814337453 577	- 2.4963696199418 77	0.0	0.0	0.0	89/112	58.81 %	27
Epstein-Barr virus infection	- 0.1227396672517 917	2.3773259664604 32	0.0	0.0035433331129 767	0.02	102/17 9	42.99 %	27
Taste transduction	- 0.1162051089342 08	- 0.8434816132145 562	0.6415094339622 641	0.7677272654741 58	1.0	11/32	21.36	27
Thermogenes	0.0549077516421 173	0.7168894036733 295	0.8412698412698 413	0.9068752813784 474	1.0	62/159	35.14 %	27
Oxidative phosphorylati on	- 0.0615741373995 872	- 0.6477804376991 224	0.9117647058823 528	0.9522364394893 263	1.0	33/86	30.82	27
Epstein-Barr virus infection	- 0.1655189474382 541	- 2.8709582269174 52	0.0	0.0	0.0	77/179	25.63 %	28
Ribosome	- 0.2069016676747 544	2.8002326767081 95	0.0	0.0	0.0	80/112	50.28 %	28
Thermogenes is	0.1313157689829 146	1.8849418718563 5	0.0	0.4625279304305 816	0.67	110/15 9	56.99 %	28
Taste transduction	- 0.1471600495573 211	- 0.9981835364480 396	0.3913043478260 87	0.6522519625967 902	1.0	30/32	78.87 %	28
Oxidative phosphorylati	- 0.0719395400172 545	- 0.7948374235753 343	0.7	0.8582578190109 95	1.0	85/86	91.65 %	28

Ribosome	- 0.3640114664957 908	- 4.4477333671435 93	0.0	0.0	0.0	77/112	31.66 %	29
Oxidative phosphorylati	- 0.2743933145830 459	- 3.2674971897351 76	0.0	0.0	0.0	57/86	37.99 %	29
Thermogenes is	- 0.1322448508758	- 2.0850669247592	0.0227272727272 727	0.0196933560477 001	0.24	96/159	46.08 %	29
Epstein-Barr virus infection	917 0.0919162478505 591	69 1.2637288151803 443	0.1571428571428 571	0.5393307349274 904	1.0	58/179	24.48	29
Taste transduction	- 0.1409379951415 683	- 0.9495072224306 784	0.6	0.9666477380276 356	1.0	15/32	31.53 %	29
Oxidative phosphorylati on	- 0.2601385384155 186	- 3.0084033219089 17	0.0	0.0	0.0	69/86	53.33	30
Ribosome	- 0.2225102822614 033	- 2.9368797355344 225	0.0	0.0	0.0	73/112	41.60 %	30
Thermogenes is	- 0.1091719810812 835	- 1.7218181735948 006	0.0	0.0964372318597 276	0.76	114/15 9	59.59 %	30
Taste transduction	- 0.1681589880592	- 1.1892261384806 169	0.2325581395348 837	0.4385299727053 663	1.0	26/32	63.47	30
Epstein-Barr virus	587 0.0557083601545 044	0.8433363336922 206	0.625	0.7871948695747 323	1.0	25/179	9.59%	30
infection Ribosome	0.3088603817864	- 4.5095090913599	0.0	0.0	0.0	67/112	27.76 %	31
Oxidative phosphorylati	165 - 0.2280577290437	805 - 2.6330109611111	0.0	0.0067149673087 117	0.03	46/86	29.19	31
Thermogenes is	473 - 0.1089243720432	74 - 1.6118959971372	0.0357142857142 857	0.1765077121147 098	0.94	58/159	24.24	31
Taste transduction	984 0.1692150451803 977	937 1.1212167825319 377	0.2666666666666666666666666666666666666	1.0	1.0	8/32	9.57%	31
Epstein-Barr virus infection	- 0.0540938598818 739	- 0.8876800724429 279	0.5625	0.8275281530626 998	1.0	108/17 9	53.43	31
Ribosome	- 0.2578530355840 409	- 3.3293167450572 5	0.0	0.0	0.0	51/112	18.35 %	32
Oxidative phosphorylati on	- 0.3010482068914 579	3.2513049419491 33	0.0	0.0	0.0	55/86	32.65 %	32
Thermogenes is	- 0.1950881150434 57	- 3.1460939081379 293	0.0	0.0	0.0	84/159	31.91 %	32
Taste transduction	- 0.1598448791793 256	- 1.1499614807625 744	0.2391304347826 087	0.5808088388094 853	1.0	9/32	10.34	32
Epstein-Barr virus infection	0.0430492200213 103	0.6365137133053 301	0.8985507246376 812	0.9827247306416 328	1.0	116/17 9	61.99 %	32
Ribosome	- 0.3630708010063 278	- 4.7397826652520 94	0.0	0.0	0.0	85/112	39.11 %	33
Oxidative phosphorylati on	- 0.3017187042155 527	- 3.1660462403331 04	0.0	0.0	0.0	70/86	50.74	33
Thermogenes is	- 0.1383763649312 712	- 2.0307768585270 07	0.0	0.0216223562388 516	0.33	107/15 9	52.73 %	33
Epstein-Barr virus infection	- 0.1147388570848 083	- 1.7310233429711 71	0.0344827586206 896	0.0902363833497 384	0.8	68/179	25.48 %	33
Taste transduction	- 0.2120107719433 776	- 1.4890153730613 67	0.0980392156862 745	0.2118406523401 002	0.99	14/32	21.31	33
Oxidative	- 0.2545196538658	- 2.8534254575539 88	0.0	0.0	0.0	59/86	41.96 %	34
phosphorylati on	1 869		i .	1	1	1		34
Epstein-Barr virus infection	- 0.1406276819473 865	- 2.1993808397548 52	0.0	0.0069618490671 122	0.08	101/17 9	40.64 %	54

Taste transduction	- 0.1327015686283 943	- 0.9523420525198 376	0.4772727272727 273	0.6694432158828 444	1.0	8/32	10.41	34
Thermogenes is	- 0.0642275325875 987	- 0.9438060795186	0.5121951219512 195	0.6694621168305 378	1.0	46/159	21.19	34
Epstein-Barr virus infection	- 0.1337794321853 186	816 - 2.1911135547340 184	0.0	0.0103028113374 597	0.14	66/179	22.07 %	35
Thermogenes	0.1169191327605	1.5391984192601	0.0422535211267	0.8218183832899	1.0	88/159	45.25	35
Oxidative phosphorylati on	175 0.0975026009723 607	724 1.0324645616114 798	0.4	328 0.9667967358698 148	1.0	53/86	% 53.19 %	35
Taste transduction	- 0.1216536857868 528	- 0.8727845560307 057	0.5957446808510 638	0.7538368738593 555	1.0	19/32	45.99 %	35
Ribosome	- 0.0485747667164 141	- 0.5931017707095 675	0.93939393939 394	0.9753651291582 288	1.0	84/112	69.03 %	35
Oxidative phosphorylati on	- 0.2263274299523 434	- 2.7372318837923 41	0.0	0.0	0.0	64/86	50.58 %	36
Thermogenes is	- 0.1201911536898 513	- 1.9299521792350 136	0.0	0.0538910872432 636	0.44	93/159	44.78 %	36
Taste transduction	0.2117787697472 15	1.3365944361544 937	0.1730769230769 23	0.5778762826788 498	1.0	24/32	55.02 %	36
Ribosome	- 0.1034471847868 074	- 1.2945477592320 158	0.125	0.3413102192073 362	1.0	49/112	31.63 %	36
Epstein-Barr virus infection	- 0.0576208425867 244	- 0.9646737080773 496	0.5	0.7001758683499 78	1.0	43/179	16.70 %	36
Ribosome	- 0.2780402190998 905	3.7626702164566 943	0.0	0.0	0.0	80/112	42.60 %	37
Oxidative phosphorylati on	- 0.1833048188200 864	2.0503336167479 16	0.0	0.0303655660377 358	0.28	76/86	69.50 %	37
Epstein-Barr virus infection	- 0.0958088948657 161	- 1.6294390632719 38	0.0	0.1462421909509 686	0.86	102/17 9	46.10 %	37
Thermogenes is	- 0.0836067027722 523	- 1.3190298606653 903	0.1666666666666666666666666666666666666	0.3955309627479 438	1.0	152/15 9	87.09 %	37
Taste transduction	0.1273989683571 168	0.8722501590968 771	0.5762711864406 78	0.7863051117965 717	1.0	6/32	7.30%	37
Thermogenes is	0.1543315294185 555	2.1000213151528 71	0.0149253731343 283	0.2416159380188 157	0.42	97/159	47.08 %	38
Ribosome	- 0.1395500689620 349	- 2.0428100405841 603	0.0	0.0313967673071 058	0.19	88/112	63.77 %	38
Epstein-Barr virus infection	- 0.0968682231117 353	- 1.5861196199728 786	0.0	0.1635434045530 38	0.91	48/179	15.98 %	38
Oxidative phosphorylati on	0.1404503366589 868	1.4065092972713 316	0.1166666666666666666666666666666666666	0.7813613724405 091	1.0	51/86	46.79 %	38
Taste transduction	- 0.1333043674603 921	- 0.9338256527433 02	0.5853658536585 366	0.7637583520474 647	1.0	23/32	57.40 %	38
Epstein-Barr virus infection	- 0.1208544640341 385	- 1.8792193758859 483	0.0	0.0779192913084 126	0.6	71/179	26.75 %	39
Ribosome	- 0.1214087761786 404	- 1.6738897666231 272	0.02777777777 777	0.1330911766058 209	0.86	64/112	44.26 %	39
Oxidative phosphorylati on	- 0.1337418025070 802	- 1.4844452740123 826	0.0909090909090 909	0.2296105568072 095	0.98	66/86	62.70 %	39
Taste transduction	0.1912523199587 957	- 1.3816456726391 608	0.1333333333333333333333333333333333333	0.3064158024799 114	1.0	13/32	20.46	39
Thermogenes is	0.0383834139505 656	0.5746257618987 081	0.9696969696969 696	1.0	1.0	140/15 9	84.73 %	39
Ribosome	- 0.1330614426196 696	- 1.6552021458471 902	0.0476190476190 476	0.1990882759126 407	0.9	96/112	71.95 %	40
Taste transduction	- 0.1995615584775 341	- 1.5323371265715 76	0.0465116279069 767	0.2384375715795 661	1.0	9/32	6.79%	40

Oxidative	T _	T _	0.1707317073170	0.3859904273473	1.0	50/86	45.85	40
phosphorylati on	0.1128483370623 297	1.2799354987414 728	731	485	1.0	30/80	%	40
Thermogenes is	- 0.0698022490763 07	- 0.9963950374822 887	0.4615384615384 615	0.6727154407149 333	1.0	47/159	21.68 %	40
Epstein-Barr virus infection	- 0.0423759172324 384	- 0.6557109849000 161	0.93333333333 332	0.9560671357686 714	1.0	36/179	15.15 %	40
Oxidative phosphorylati on	- 0.3178452567996 256	- 3.2308443138546 794	0.0	0.0	0.0	60/86	36.90 %	41
Ribosome	- 0.2398031423342 298	3.2183620427351 154	0.0	0.0	0.0	62/112	29.85 %	41
Epstein-Barr virus infection	- 0.0925176446724 106	- 1.5139748150739 774	0.0714285714285 714	0.1867903688977 247	1.0	94/179	41.80 %	41
Thermogenes	- 0.0858185058777 302	- 1.2891483325508 557	0.138888888888 889	0.3620553104139 39	1.0	73/159	35.91 %	41
Taste transduction	0.1355329698643 851	0.9167825200406 078	0.6101694915254 238	0.8683607535453 032	1.0	11/32	22.45	41
Ribosome	- 0.1640123151182 866	- 2.2033014501858 85	0.0	0.0058554195650 259	0.03	47/112	24.40	42
Epstein-Barr virus infection	- 0.1240266084660 245	- 2.0585535228846 64	0.0	0.0156144521734 026	0.12	58/179	18.85 %	42
Oxidative phosphorylati on	- 0.1371541527892 488	- 1.5255224471587 14	0.0789473684210 526	0.1642119886902 84	0.99	31/86	21.18	42
Thermogenes is	0.0720718234332 094	1.0664691857698 492	0.4	0.6857369966176 559	1.0	76/159	41.91 %	42
Taste transduction	0.1515671345565 241	1.0309313938721 68	0.4230769230769 231	0.7313310413885 615	1.0	18/32	42.56	42
Oxidative phosphorylati on	- 0.2727001833743 558	- 3.2400327871522 09	0.0	0.0	0.0	61/86	42.59	43
Ribosome	- 0.2035206597539 268	- 2.6583790691907 123	0.0	0.0	0.0	54/112	26.37 %	43
Epstein-Barr virus infection	- 0.1166104695400 355	- 1.9235375611382 84	0.0	0.0455769077000 986	0.48	63/179	22.09 %	43
Thermogenes is	- 0.1254676352054 362	- 1.8457547420625 61	0.0	0.0558676937018 577	0.64	118/15 9	60.51	43
Taste transduction	- 0.0841319508329 352	- 0.5943039962466 512	0.9310344827586 208	0.9839238785681 922	1.0	5/32	6.19%	43
Oxidative phosphorylati	- 0.2321417570446 411	- 2.6083797429053 66	0.0	0.0050045703839 122	0.03	45/86	27.77	44
Thermogenes is	- 0.1553811792791 847	- 2.4138571901508 17	0.0	0.0033363802559 414	0.03	73/159	29.10 %	44
Epstein-Barr virus infection	- 0.0995353249186 391	- 1.7774636988555 75	0.0	0.0973110907982 937	0.78	65/179	24.97 %	44
Ribosome	- 0.0827061919968 07	- 1.1703424936817 148	0.1891891891891 892	0.5609355503322 596	1.0	94/112	74.95 %	44
Taste transduction	- 0.1152252573035 39	- 0.7379242450079 108	0.833333333333 334	0.9559267559120 128	1.0	18/32	43.30 %	44
Epstein-Barr virus infection	- 0.1483740711922 618	- 2.5401627938768 514	0.0	0.0028021015761 821	0.01	94/179	36.32 %	45
Ribosome	- 0.1752683634281 028	- 2.1107840486152 813	0.0	0.0196147110332 749	0.12	104/11 2	75.04 %	45
Thermogenes	- 0.0971470308528 347	- 1.6584616343711 849	0.0344827586206 896	0.1473697865992 086	0.9	91/159	46.24 %	45
Oxidative phosphorylati on	- 0.1096084072672 24	- 1.2988032557097 435	0.1481481481481 481	0.4687428614939 465	1.0	33/86	26.02 %	45
Taste transduction	- 0.1551495073391 745	- 1.0785825390232 742	0.3076923076923 077	0.6719363847209 733	1.0	20/32	45.38 %	45
Ribosome	0.1431119957761	1.8722865029844	0.0	0.0499218630888 855	0.55	73/112	49.78 %	46

Epstein-Barr	-	-	0.1481481481481	0.2911412835816	1.0	123/17	59.66	46
virus infection	0.0793189315278 572	1.3118898412789 644	481	963		9	%	
Thermogenes is	0.0936037460391 565	1.2548579471203 485	0.1969696969696 969	1.0	1.0	111/15 9	61.67 %	46
Oxidative phosphorylati on	0.0813586157156 401	0.8352347040497 169	0.6470588235294 118	0.9734071341051 324	1.0	59/86	61.67 %	46
Taste transduction	- 0.0950583728437 162	- 0.6570628315004 804	0.8235294117647 058	0.9181045592912 36	1.0	26/32	70.77 %	46
Epstein-Barr virus infection	- 0.1052548510684 108	- 1.6942473121961 907	0.0	0.1527238882643 749	0.83	70/179	27.11 %	47
Taste transduction	- 0.1665622841165 926	- 1.1589575677115 576	0.1578947368421 052	0.5307371527555 014	1.0	27/32	66.92 %	47
Ribosome	0.0928670008454 053	1.0481938467277 976	0.3174603174603 174	0.9726296283829 868	1.0	60/112	46.00 %	47
Oxidative phosphorylati on	0.0764689987773 298	0.8349208881250 927	0.6190476190476 191	0.9295712285133 726	1.0	27/86	25.32 %	47
Thermogenes is	0.0516962539223 096	0.6632178111894 441	0.8947368421052 632	0.9660380807615 692	1.0	77/159	44.90 %	47
Ribosome	- 0.2086899163590 077	- 2.8344373214639 305	0.0	0.0	0.0	92/112	60.70	48
Oxidative phosphorylati on	0.1847751109308 437	- 2.0669629644262 6	0.0	0.0289672920968 369	0.27	57/86	46.54 %	48
Taste transduction	- 0.2350461769872 571	- 1.5705780859429 173	0.0344827586206 896	0.2290226531406 17	0.97	17/32	27.56 %	48
Epstein-Barr virus infection	- 0.0873852347574 65	- 1.4178785746948 572	0.0625	0.3207701610135 031	1.0	53/179	19.58 %	48
Thermogenes is	0.0805316014676 845	1.1124624427720 406	0.2876712328767 123	0.7825594377496 813	1.0	56/159	28.71	48
Oxidative phosphorylati on	- 0.2510168501713 146	- 2.7585729333414 672	0.0	0.0094270547318 323	0.01	61/86	44.79 %	49
Thermogenes is	- 0.0826014889987 527	- 1.4245942022814 24	0.0	0.3296102350879 946	1.0	85/159	43.73 %	49
Epstein-Barr virus infection	0.1011614267036 261	1.4215808102880 614	0.111111111111 111	0.4581956717621 208	1.0	46/179	17.31 %	49
Taste transduction	- 0.1487174195437 644	- 1.1160397511139 348	0.35	0.6191689547867 472	1.0	20/32	46.14 %	49
Ribosome	0.0626830455571 333	0.8321608130739 544	0.6756756756756 757	0.9056015526361 488	1.0	109/11	90.87 %	49

Appendix IV

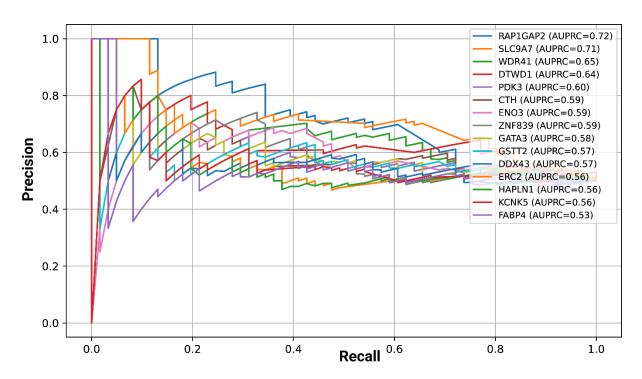


Figure Appendix IV: Precision—recall curves for the top 15 latent-space-contributing genes.

Appendix V

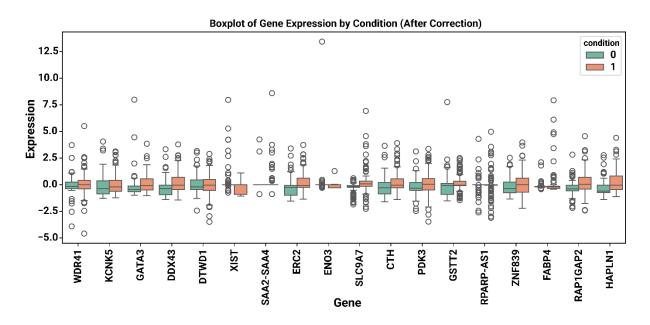


Figure Appendix V: Boxplot of gene expression levels for the top latent contributors across tumor (1) and control (0) conditions