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Abstract

Background: Conventional differential gene expression (DGE) analysis inadequately
captures the complex molecular changes that drive the progression of oropharyngeal
carcinoma (OC). Variational Autoencoder (VAE) offers a deep learning approach to

uncover hidden patterns in high-dimensional transcriptomic data, potentially

Methods: Gene expression datasets were combined, from multiple databases and trained a
PEM to compress the data into a small, hidden space. Integrated Gradients was utilized, an
automated attribution technique, to determine the contribution of each gene to each latent
node (biological representation). Genes that consistently had high attribution scores across
all latent dimensions were chosen as potential regulators (driver genes). Pathway
enrichment analysis and classification analyses unveiled the biological significance of these

genes.

Results: The PEM learned latent features that are biologically important, and Integrated
Gradients showed a group of genes that have a big impact on these features. RAP1GAP2
was consistently one of the top contributors across all 50 latent variables, which is
noteworthy. RAP1GAP2 had the highest latent-space importance and strong discriminative
power for telling OC apart, with a performance of 0.769. This occurred despite the lack of
substantial differential expression in tumors relative to normal samples. Biological
interpretation suggests that RAP1GAP2, a protein that activates Rapl GTPase, may help
tumors invade by turning off Rapl and changing MAPK signaling and Golgi-mediated

secretion.

Conclusion: Our deep learning framework found RAP1GAP2 to be a hidden driver in
oropharyngeal carcinoma. This demonstrates how VAE and Integrated Gradients may
discover molecular regulators overlooked by alternative approaches. This method delivers
novel dimensions about the biology of OC tumors that could benefit future research and

therapeutic approaches.

Keywords: Oropharyngeal carcinoma; transcriptomics; deep learning; latent features;

RAP1GAP2; Rapl signaling; MAPK pathway; Golgi secretion
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Introduction

1.1 Overview of Oropharyngeal Carcinoma

One type of head and neck cancer that has significant clinical significance is oropharyngeal
carcinoma (OC). Human papillomavirus (HPV) infection has contributed to the increase in
its incidence in recent decades, making HPV-positive oropharyngeal squamous cell
carcinoma one of the cancers that is growing the fastest in many high-income nations
(Lechner et al. 2022). An anatomical illustration of the oropharynx and its neighboring

regions is shown in Figure 1.1 to highlight the tumor's location and clinical context.

Types of Head
and Neck Cancers

Nasal cawty‘——;qx\
Tumor

Hard palate—\? ————— | Nasopharynx
T c ﬂ?\w T\\‘ Oropharynx
ongu : \ v
Larynx
Esophagus
Trachea

Figure 1.1 Anatomical regions of the head and neck involved in cancer. [Figure created

using Adobe Illustrator v27.8.1].

Because of its subtle early symptoms, OC frequently manifests at advanced stages, leading
to substantial morbidity and mortality. Therefore, a deeper comprehension of the molecular
foundations of OC is urgently needed to facilitate earlier detection, better patient
stratification, and more successful precision therapies (Sabbatini and Manganaro 2023).
Results for advanced OC are still uncertain despite advancements in systemic treatments,

radiation therapy, and surgery. Gaining a better understanding of the transcriptome
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Introduction

landscape of the tumor may help identify new molecular drivers that could enhance patient

care.

1.2 Complexity of Cancer Biology and Analytical Gaps

The biology of cancer is extraordinarily complex, involving non-linear interactions among
genes and pathways that drive tumor behavior. Traditional differential gene expression
(DGE) analysis—which typically relies on linear models or statistical tests to find genes
individually up- or down-regulated in tumors—has clear limitations when faced with this
complexity. DGE methods excel at identifying genes with large average expression
changes, but they may overlook hidden drivers that exert their effects through subtle or

combinatorial patterns.

In other words, patient subgroups or tumor phenotypes could be determined by gene sets
that do not show obvious one-at-a-time differences and thus remain “invisible” to linear
DGE approaches (Rampasek et al. 2019). Indeed, recent work has cautioned that when
nonlinear machine learning models identify patient groupings, the defining gene signatures

might be missed by conventional DGE due to its linear nature (Rampasek et al. 2019).

Such underappreciated genes or gene interactions may be crucial for the development of
cancer, making this gap problematic. Analytical techniques that can capture the nonlinear
dependencies in gene expression data and go beyond linear assumptions are required. One
potential remedy is explainable algorithms (machine learning), which can reveal
multivariate gene patterns that would otherwise go unnoticed by applying interpretability
techniques to complex models (Abbas and El-Manzalawy 2020; Way et al. 2020). In
conclusion, techniques that can model and explain the complex, nonlinear relationships that

define cancer biology are necessary to overcome the shortcomings of DGE.

1.3 Deep Learning for Latent Feature Discovery

We use deep learning—more especially, unsupervised deep neural networks—to learn
biologically significant latent variables from transcriptomic data in order to overcome these
difficulties. A class of deep generative models that are ideal for this task are Variational
Autoencoder (VAE). A PEM preserves as much information as possible while compressing
high-dimensional gene expression profiles into a lower-dimensional latent space. Complex
gene expression patterns can be reduced by this method to a collection of latent features
that capture patient variability and underlying biological signals. Figure 1.2 illustrates the

basic architecture of a deep neural network, where an encoder maps gene expression into
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latent representations for downstream interpretation. High-dimensional gene expression
data are processed through multiple layers of an encoder network to generate low-
dimensional latent features. These latent variables represent condensed biological signals

and are suitable for interpretation, classification, or further modeling.

TN

Hidden Layer

Y
o

Vv W\V/ VIV VWA
Input %W%?%%‘% \\’0“;@?’{‘/ }"{(/ Output

7 w&'\\é %2:&}
VAT AT/

Deep learning neural network

Figure 1.2 Basic architecture of a deep neural network. [Figure created using Adobe
lustrator v27.8.1].

Largescale gene expression datasets have seen the successful application of VAE and
related autoencoder techniques, which have shown promise in modeling non-linear gene
interactions and enhancing outcome predictions (Sundararajan et al. 2017). To illustrate
the ability of deep learning to capture subtle transcriptomic effects of treatment, Rampasek
et al. demonstrated that a PEM-based model ("Dr.PEM") could learn latent representations
of cancer cell line expression data that improve drug response prediction (Zhang et al.
2006). Similar to this, Way et al. used PEM to compress pan cancer gene-expression data
and discovered that different biological signals (like pathway activities and mutational
status) emerged when the latent dimensionality was varied. This suggests that deep
compression can learn complementary aspects of tumor biology that are not possible with

a single linear compression or DGE analysis (Way et al. 2020). These studies underscore
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that deep neural networks can extract non-linear features from gene expression data,

potentially revealing patterns that are not evident to traditional methods.

However, a known drawback of deep learning models is their limited interpretability—the
latent features or learned representations are “black boxes” without clear biological
meaning. In the context of cancer transcriptomics, it is not enough to discover latent
variables; we also need to understand which genes those variables represent or how they
relate to known biology. Simply compressing data with a PEM might yield abstract features
that correlate with disease, but without interpretation we cannot translate those features into

testable biological insights.

1.4 Gene Attribution with Integrated Gradients

To interpret the latent space and connect it back to gene-level biology, we employ integrated
gradients, a robust feature attribution method for neural networks. Integrated gradients
provide a way to quantify the contribution of each input feature (in this case, each gene’s
expression) to a given output or latent variable in the model (Janizek et al. 2023). Formally,
integrated gradients work by integrating the gradients of the model’s output with respect to
inputs along a path from a baseline to the actual input, yielding an attribution score for
every feature that satisfies desirable axioms of fairness and sensitivity (Janizek et al. 2023).
Introduced by Sundararajan et al. in 2017, this method has become a popular tool for
explaining deep learning predictions in various domains (Janizek et al. 2023). In our study,
we harness integrated gradients to attribute genes to latent variables learned by the PEM
and to any downstream predictive outputs. This approach effectively “opens the black box”
of the autoencoder by highlighting which genes most strongly influence each latent

dimension of the model.

Notably, earlier studies have shown how useful it is to combine feature attribution and deep
generative models in genomics. For instance, Dincer et al. identified the top contributing
genes for each latent dimension by applying integrated gradients to the latent features of a
PEM trained on cancer gene expression data (Janizek et al., 2023). Researchers can anchor
abstract features in concrete biology by using this post hoc interpretation of latent space.
For example, based on the genes with the highest attributions, a latent dimension may end
up representing a pathway or cell cycle signature. Building on these concepts, we derive
gene-level importance scores for the learned latent factors by combining our PEM with

integrated gradients. By doing this, we can identify the genes that are most important for
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differentiating oropharyngeal tumors from controls (or other tumor subtypes) and that drive
the variations recorded in the latent space. In addition to maintaining interpretability, this
combination of unsupervised, deep learning and explainability techniques enables us to find

biologically significant patterns that would be missed by linear analysis alone.

1.5 Revealing Hidden Driver: The Case of RAPIGAP2

By using this deep learning framework on OC transcriptomic data, new understandings of
the molecular causes of the disease are revealed. Integrated gradients identify the genes that
define the latent variables that the variational autoencoder extracts and that summarize gene
expression patterns across tumors. Our analysis reveals that RAP1GAP2 is a crucial latent
driver gene in oropharyngeal carcinoma, which is intriguing. With a high attribution score,
RAP1GAP2 stands out in our model as one of the main contributors to a latent feature that
is very predictive of the presence of OC. This finding is noteworthy because, according to
standard differential expression analysis, RAP1GAP2 was not identified as significant; that
is, its average expression levels between tumor and normal do not differ sufficiently to meet
standard statistical thresholds. RAPIGAP2 would have been completely overlooked by
traditional DGE, but our deep learning method revealed it to be a significant participant
with a nonlinear contribution to the tumor transcriptome. The impact of RAP1GAP2 only
becomes apparent when taking into account intricate interactions recorded in the latent
space, demonstrating how deep learning can uncover "hidden" drivers that elude linear

analysis.

From a biological standpoint, the implication of RAPIGAP2 in OC is plausible and
generates new hypotheses. Although RAP1GAP2 itself has not been well-studied in
oropharyngeal cancer, it belongs to the same family as RaplGAP (also known as
RAPI1GAP1), which has been reported to act as a tumor suppressor in squamous cell
carcinoma. In fact, restoring Rapl GAP expression in OC cell lines was shown to reduce
active Rap1 signaling and significantly slow tumor growth in vivo (Zhang et al. 2006). This
prior evidence of the Rapl pathway’s involvement in head and neck cancer provides
context for our findings: it suggests that downregulation or dysregulation of Rapl-
inhibitory proteins (like Rapl GAP or RAP1GAP2) could contribute to oncogenic processes
in the oropharynx. Our discovery of RAPIGAP2 as a latent driver, despite its subtle
expression changes, underscores how deep learning-based analysis can pinpoint
functionally relevant genes that conventional analyses deem insignificant. Such genes

might represent early changes or context specific vulnerabilities that are missed when
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focusing only on large fold-changes. Identifying RAP1GAP2 as highly predictive of OC
opens the door to further experimental validation and investigation into its potential role in

tumor suppression or as a biomarker for disease presence.

1.6 Hypothesis of the Study

We hypothesize that deep neural networks, particularly Probabilistic Embedding Model
(PEM) models, can learn latent representations of transcriptomic data that capture complex,
nonlinear biological signals associated with oropharyngeal carcinoma. These latent features
are expected to reveal molecular regulators that conventional differential gene expression
(DGE) analyses may overlook due to their reliance on linear assumptions. By integrating
unsupervised deep learning with interpretability techniques such as integrated gradients,
we anticipate uncovering key gene-level contributors—such as RAP1GAP2—that drive
tumor invasion and progression despite showing no significant differential expression. This
approach offers a novel avenue for identifying biologically relevant signals embedded in

high-dimensional gene expression data.

1.7 Significance of the Study

Comprehending the molecular pathways underlying oropharyngeal cancer (OC) is a
significant challenge, especially due to the constraints of conventional gene expression
analysis techniques that frequently depend on linear assumptions. This paper presents a
deep learning system that may reveal nonlinear and concealed transcriptome signals,
providing an innovative method for identifying genetic drivers of ovarian cancer. Utilizing
variational autoencoders and integrated gradients, we discovered RAP1GAP2 as an
unknown factor in tumor invasion and development, despite its absence of differential
expression according to traditional statistical standards. This underscores the capability of
modern computational modeling to not only augment but also exceed conventional
analytical methods. The results of this study provide novel avenues for biological research
and therapeutic development in ovarian cancer and create a framework for the application

of interpretable deep learning to other intricate diseases.

1.8 Aims and Objective

This study aims to uncover hidden transcriptomic patterns and identify novel gene-level
drivers of oropharyngeal carcinoma (OC) by applying deep neural network-based
methods—specifically variational autoencoders and integrated gradients—that go beyond

the limitations of traditional differential expression analysis.
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Objectives of the study are,

e To apply deep learning (PEM) for compressing gene expression into latent features.

e To detect complex, nonlinear gene patterns missed by standard tools.

e To interpret latent features using Integrated Gradients for gene attribution.

e To combine unsupervised modeling with supervised classification.

e To identify novel molecular drivers involved in OC progression.

e To compare the performance of this method with traditional differential gene expression

approaches.
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Material and Methods

2.1 Workflow of the Study
The design of the overall study is illustrated in Figure 2.1
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Figure 2.1: Workflow of the study pipeline. PCA-transformed multi-dataset gene expression is
encoded via PEM to latent space, followed by Integrated Gradients-based gene attribution and
supervised learning to identify molecular drivers and extract biological insights of the latent

spaces. [Figure generated using Adobe lllustrator v27.8.1].

2.2 Datasets Retrieval
Publicly available gene-expression datasets of oral carcinoma (OC) generated using

different platforms—including [HG-U133 Plus 2] Affymetrix Human Genome U133 Plus
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Material and Methods

2.0 Array, [HG-U133A] Affymetrix Human Genome U133 A Array, [llumina NextSeq 500
(Homo sapiens)—were downloaded. A total of 19 datasets were parsed from the National
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database for Oral Cancer
types, where a python library GEOparse v2.0.0 (https://github.com/guma44/GEOparse)
was incorporated to extract the sequencing data with their phenotype data from the database

server. All information about the datasets including sample size mentioned in Table 2.1.

Table 2.1 Expression Profiling Datasets for OC

GEO_Accession Samples Platform Study Type
GSE37991 80 (40 tumor + GPL6883 (Illumina Expression
40 normal) HumanRef-8) profiling by array
GSE23558 31 (27 tumor + 4 GPL6480 (Agilent Expression
normal) 44K) profiling by array
GSE25099 79 (57 tumor + GPLS5175 Expression
22 normal) (Affymetrix Exon profiling by array
ST)
GSE10121 41 (35 tumor + 6 Operon Oligoset Expression
normal) 4.0 profiling by array
GSE31853 11 (8 tumor cell GPL96/570 Expression
lines + 3 normal) (Affymetrix) profiling by array
GSE131182 12 (6 paired GPL20301 Expression
tumor + normal) (ITlumina HiSeq) profiling by
RNA-seq
GSE145272 10 (5 metastatic HiSeq 2500 Expression
+ 5 non- RNA-seq profiling by
metastatic) RNA-seq
GSE217142 6 (primary + NovaSeq 6000 Expression
recurrent tumors) RNA-seq profiling by
RNA-seq
GSE85195 49 (34 OSCC + GPL6480 (Agilent Expression
15 OPL) 44K) profiling by array
GSE168227 6 paired tumor- Agilent IncRNA Expression
normal samples microarray profiling by array
GSE84805 6 paired tumor- Agilent IncRNA Expression
normal samples array profiling by array
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Material and Methods

GSE30784 2209 total (167 GPL570 Expression
tumor + others) (Affymetrix U133 profiling by array
Plus 2.0)
GSE2280 32 (27 non- GPL96 Expression
metastatic + 5 (Affymetrix profiling by array
metastatic) U133A)
GSE3524 20 (16 tumor + 4 GPL96 Expression
normal) (Affymetrix profiling by array
UI33A)
GSE6791 154 (119 tumor + Affymetrix U133 Expression
35 controls) Plus 2.0 profiling by array
GSE41442 55 (45 tumor + GPL570 Expression
10 normal) (Affymetrix) profiling by array
GSE37371 100 (50 tumor + GPL96 Expression
50 normal) (Affymetrix) profiling by array
GSE23030 30 metastatic GPLS5175 Expression
tongue OSCC (Affymetrix Exon profiling by array
ST)
GSE29000 50 (40 tumor + GPL570 Expression
10 normal) (Affymetrix) profiling by array

Extracted results according to the supplied ArrayExpress accession ids filtered out based
on the treatment and condition of the samples. We got a total of 1001 samples from all the
datasets combined, where sample number with OC positive was 754. Samples treated with
radiation therapy, chemotherapy, targeted therapy, immunotherapy, hormonal therapy and

drugs were excluded from the study manually.

2.3 Data Integration, Batch Effect Removal and Preprocessing

To amalgamate data from different platforms, a python data analysis library pandas v1.5.3
(McKinney 2011) was incorporated. Data imputation was conducted by missForest v0.9
(Stekhoven and Biihlmann 2012) package in R to avoid the NA values in the datasets. For
concatenating multiple datasets from multiple platforms with different techniques, a batch
effect correction method based on python library was applied on the integrated data to
combat the platform specific biases. A function called “ComBat” from python library
pyComBat v0.3.2 (Behdenna et al. 2023) was used to remove the technical biases that arose
by the integration process. Expression data of merged dataset was log-transformed, Z-

standardized on each gene to ensure that all features are on the same scale.
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Material and Methods

2.4 Training Deep Neural Network Models

2.4.1 Datasets Merging and Standardization

After manual selection and preprocessing, we had 663 cancer-positive samples, each
containing 11020 genes—common in all datasets. Despite the high dimensional gene
expression matrix, which was complex to interpret the samples with their condition, a
principal component analysis was conducted with 500 PCs (n_components=500) while
preserving all important data and variance among the samples. PCA was performed in R
using the following packages: stats v4.2.3, factoextra v1.0.7 (Kassambara and Mundt 2020)
for extraction and display of PCA results, and dplyr v1.1.4 (Hadley Wickham et al. 2020)

for data manipulation.

2.4.2 Traditional Deep Learning Model

A probabilistic latent variable model was built on reduced PC data to learn a compact, non-
linear delineation of the high-dimensional gene expression data. This is a type of neural
network that contains an encoder and a decoder network with an entropy-limited latent
mapping with D latent variables (here, D <M, where M=500PC, represents the number of
features) in the middle. This process generates an embedding Z, which preserves the whole
information of the input (500PC) into a lower dimensional space (Bro and Smilde 2014).
Categorically, the encoder network, defined as fg: X — Z, maps from the input space X €
RM to latent embedding Z € RP. Similarly, the decoder network, defined as Gl -
X maps the embedding Z back to input space. The main objective of the model is to
minimize the anticipated squared Euclidean (L2) norm (Tian et al. 2017) between the input

and its reconstruction:

- 2 .
rgjl(pn E ||x — 9 (f¢(x))||2 N (1)
Here in (i) equation, ¢ and ¢ are the parameters of the encoder and decoder, respectively,
and X = g, ( fo (x)) represents the reconstructed input for every sample. Where, L2 loss

denoted by Il x — & [|3, captures the total reconstruction error across all dimensions of the

input. Overtly, this corresponds to:

(x1 - 21)2 + (xz - 22)2 + -+ (xn - fn)z cos ses oo (ii)
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Material and Methods

2.4.3 Additional Sample Distribution

Unlike conventional approach, we used probabilistic embedding model (PEM), which
encodes each sample as a probability distribution—captures uncertainty and biological
variability inherent in gene expression profiles. Samples with 500 principal components

RN*M where N is the number of samples

(PCs) were used to construct the input matrix X €
and M is the number of features. This matrix was passed to an encoder fy, which outputs a

mean vector i, € R? and a variance vector o, € RP:
fo:x > (Uy,0%), Z~N(Uy,0y) ... .. ... (i)

A decoder g,, reconstructs the input from the sampled latent vector Z. The model is trained

to minimize the following loss:
min E |l x - g, (F5(0) I3 + KL[(15,0.), N (O, D] e (i)

The first term ensures accurate reconstruction, while the KL divergence regularizes the
latent space by encouraging it to resemble a standard (Pan et al. 2020). After training, the
learned latent variables Z were used for gene importance analysis using Integrated

Gradients, followed by pathway enrichment.

2.5 Neural Network Design and Hyperparameter Optimization
2.5.1 Train Model with Adam Optimizer

PEM models were trained to unite the PCs from the OC gene expression matrix as inputs.
Three-layer encoder and decoder networks were designed as a mirror of each other. The
model was trained in batches of 50 samples by using (Wang et al. 2022), with a learning

rate of 0.0005, with weight initialized randomly using the Glorot uniform method.

2.5.2 Cross validate and Extract Best Latent Dimension

To determine the best fitted latent space as per my study, we deliberately selected a set of
sizes: 5, 10, 25, 50, 75, and 100. This comprehensive selection was made to give our models
a broad scope to capture a wide range of information from the datasets. Hyperparameter
tuning was performed to fine-tune hyperparameters including the dropout rate and the
number of neurons per layer using 5-fold cross-validation, guided by validation
reconstruction error (Elgeldawi et al. 2021). We tested dropout values including 0, 0.2, 0.4,

and 0.6. For hidden layer configurations, we explored multiple settings such as (50, 5),
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(100, 25), (250, 50), (250, 100), and (300, 150), where the first and second values indicate
the number of neurons in the first and second hidden layers, respectively. The model was
implemented in Python using Keras v2.2.4 (Chollet 2015) and TensorFlow v1.12.0 (Filus
and Domanska 2023).

2.6 Learning Robust Latent Representations

To find out the stable and fruitful biological representation of the data, VAE were trained
with different random initializations and latent dimensionalities. For each latent size,
training across multiple random seeds was repeated, resulting in a large collection of
embeddings. To aggregate latent variables Z € R? generated across multiple folds of
different models, k-means clustering was applied to group (/) similar latent features
together (Sinaga and Yang 2020). To obtain the final ensemble latent dimension
Z pnsemble € RE, G-means clustering was implemented, resulting in a fixed latent size
L=50, which was used across all samples for downstream analysis. The final latent
embedding for each sample was constructed by averaging all latent variables within each

cluster (Ri and Kim 2020).

2.7 Gene Attribution and Pathway Analysis
2.7.1 Sensitivity-Based Scoring (SBS) for Gene-to-Latent Attribution

To determine which gene contributed to what latent variables, a custom sensitivity-based
scoring (SBS) approach was applied. SBS was first integrated into the method to calculate
the importance of each PC for every latent variable. Then these attributions were scaled to
gene level with the PC level weights, resulting in gene-level importance scores and by

averaging we got global gene attributions for each latent.

2.7.2 Pathway Enrichment Analysis of Latent Variable-Associated Genes
To interpret the biological representation, top-ranked genes derived from every ensemble
latent variable, we performed pathway enrichment analysis using the g:Profiler tool via the
gprofiler2 v2.34 (Peterson et al. 2020) R package. Gene sets with the highest attribution
scores were input into the gost() function, which maps genes to known functional categories
including Gene Ontology (GO) terms (Biological Process, Molecular Function, Cellular
Component), KEGG pathways, and Reactome pathways (Carbon et al. 2017; Jassal et al.
2020; Kanehisa et al. 2023). We used the default settings for the organism (Homo sapiens),
applied multiple testing correction via the Benjamini—-Hochberg method (FDR < 0.05), and
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excluded electronic GO annotations to improve specificity (Ferreira and Zwinderman
2006). The results were visualized and ranked by adjusted p-values and term size to

highlight the most enriched biological functions associated with each latent variable.

2.7.3 Gene Set Enrichment Analysis (GSEA)

To uncover the biological functions associated with each latent variable, we performed
Gene Set Enrichment Analysis (GSEA) using pre-ranked gene lists derived from latent
variable attributions (Balagopalan et al. 2009). The enrichment results were obtained using
a standardized pipeline and summarized across all latent variables. Pathways with a false
discovery rate (FDR) < 0.05 were considered statistically significant. We calculated the
normalized enrichment score (NES) for each term-latent pair and constructed a matrix of
NES values. To focus on the most variable biological patterns, we selected the top 50
pathways based on the highest variance across latent variables. These were visualized as a
heatmap using the seaborn vO0.11.5 (Waskom 2021)library in Python, highlighting

pathway—latent associations that may represent underlying biological signals.

2.8 Supervised Deep Learning Model Training

2.8.1 Gene Selection and Data Collection

To identify important driver genes for oropharyngeal carcinoma (OC), we analyzed gene
attribution scores generated by the Deep model across 50 latent variables. Based on this
analysis, we selected 20 genes that consistently ranked among the top contributors across
multiple latent dimensions. These candidate driver genes were validated using an
independent dataset, which included both OC and non-tumor control samples profiled on

[llumina HiSeq 4000 and NovaSeq 6000 sequencing platforms.

2.8.2 Normalization and Batch Correction

To address potential batch effects and platform-specific variability, we applied gene-wise
Z-score normalization within each batch. Following normalization, batch correction was
carried out using the empirical Bayes method implemented in the pycombat v0.3.5. All data
manipulation and preprocessing were performed using the pandas v2.2.1 and numpy
v1.24.4 libraries, with additional support from scanpy v1.9.6 (Wolf et al. 2018) for

annotation and matrix handling.
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2.8.3 Model Development and Training

We developed and trained three types of deep learning models to classify samples into OC
or control groups based on the expression of the 20 selected genes. These models were
implemented using TensorFlow 2.12.0 with the Keras backend. Hyperparameter tuning was
conducted using the kerastuner library v1.3.5, and model performance was assessed
through five-fold stratified cross-validation (Wazery et al. 2023). The optimal MLP
architecture consisted of two hidden layers with 128 and 64 neurons respectively, each
followed by ReLU activation and dropout layers with a rate of 0.2. A final sigmoid-
activated output layer was used for binary classification (Tolstikhin et al. 2021). All models
were trained using the Adam optimizer (Wang et al. 2022) (learning rate = le-4), binary
cross-entropy loss, a batch size of 32, and early stopping based on validation loss with a

patience of 10 epochs.

2.8.4 Evaluation and Visualization

Model performance was evaluated using two key metrics: area under the precision—recall
curve (AUPRC) and area under the receiver operating characteristic curve (AUROC).
Visualizations of model predictions, ROC curves, and PR curves were generated using
matplotlib v3.8.0 and seaborn v0.13.2. All experiments were conducted in a Linux-based

computing environment.

2.9 Differential Gene Expression analysis

Expression data were analyzed using DESeq2 v1.40.2 (Love et al. 2014). Low-expression
entries were removed before normalization. Variance-stabilizing transformation was
applied for visualization. Differential expression analysis was performed using negative
binomial distribution, and significance was defined as adjusted p-value < 0.05 and absolute
log: fold change > 1. Volcano plots were generated using EnhancedVolcano v1.20.0 (Blighe
et al. 2021).
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3.1 Data Preprocessing and Quality Assessment

Highly expressive models such as deep neural networks tend to overfit when the sample
size is small, we collected 19 available expression datasets from different platforms for
human Oropharyngeal Cancer (OC). To remove the platform-specific biases, we
preprocessed the datasets (Figure 3.1A), manually excluded samples that did not satisfy
the requirements, and finalized 643 samples for PCA, with 11020 genes common across all
datasets. Standardized gene expression values were visualized using a boxplot (Figure
3.1A) among all the samples, showing consistent distribution across samples and
confirming effective scalability. PCA was performed on the 643 samples expression to

reduce the dimension of the features in 500 PCs
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Figure 3.1: Preprocessing and PCA of gene expression data. (4) Boxplot of standardized
expression values for 11,020 genes across 643 finalized samples. Each box represents one
sample, where dots represent outliers. (B) PCA scatterplot, containing the first two
principal components for all samples; X axis containing PCI and Y axis containing PC2
(C) Scree plot showing the proportion of variance explained by the first 50 principal
components. The variance contribution is uniformly low, supporting their use in

downstream neural network training. [Figure generated using Python v3.12].
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for model training, where scatterplot (Figure 3.1B) showed no ostensible clustering or
batch effect, indicating appropriateness for unsupervised modeling. The scree plot (Figure
3.1C) of'the first 50 PCs shows uniformly low variance, confirmed that the components are
evenly distributed. Other 450 PCs are similarly contained the same proportion of variance
around 0.002. A minor drop in ratio in PC9 was observed, which likely reflects numerical

or structural variance fluctuations other than biological interpretation.

3.2 Latent Space Extraction Using Deep Neural Network
Multiple models trained using the latent dimensions, including 5, 10, 25, 50, 75, and 100,
and evaluated their ability to reconstruct the same sample using the parameters based on

reconstruction error in both training and validation sets (Figure 3.2A).
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Figure 3.2: Model Performance and Gene Attribution. (4) Barplot showing
reconstruction error for both training and validation sets across different latent dimensions.
X axis represents the latent nodes and Y axis showing the reconstruction error values. (B)
Barplot showing the top 10 genes contributed to Latent Node 0, based on absolute
Integrated Gradients (IG) scores from the ensemble attribution matrix. [Figure generated

using Python v3.12].

As the number of latent nodes increases, the reconstruction errors reduce as per the change,
representing higher capacity of reconstruction. However, the improvement stops after 50
dimensions, which implies that higher nodes can increase the risk of overfitting the data as
well as the complexity of the process. Therefore, we selected 50 nodes of latent to finalize
the PEM models and got multiple folds of latent from all the models in each fold. This
hyperparameter tuning helped us to reach the most relevant latent spaces, understand the

core biology of OC from the complex environment of the data.

Figure 3.2B, a sample representation of the top 10 genes in the first latent dimension,
showing the strong connection with the latent node 0, ranked by their importance score.
These genes, including MSRB1 (0.00416), TTI2 (0.00389), MPP5 (0.00358), ATF3
(0.00354), PYHIN1 (0.00349), HPCAL1 (0.00349), PICALM (0.00342), COMMDS
(0.0033), SFT2D2 (0.00325), RNF130 (0.00320), are the primary drivers of the
representation/signal captured by this latent space. Top 10 drivers of the representation

from all 50 lanterns mentioned in Appendix I.

3.3 Latent Variables Capture Distinct Gene Programs and Biological
Pathways

To characterize the biological meaning of the latent space learned by the PEM model, we
analyzed gene-level attributions using Integrated Gradients. We computed mean attribution
scores for each gene across all 50 latent variables (latent nodes) and selected the top 20
genes with the highest overall contributions (Figure 3.3A). These included genes such as
DDX43, FABP4, RAP1GAP2, KCNKS5, XIST, ZNF839, CTH, ERC2, and PDK3, among
others. Mean attribution scores across latents ranged from 0.0035 to 0.0055, with FABP4
and CTH contributing strongly to Latent 24 and 25, and ERC2 and ZNF839 dominating

Latent 28, indicating distinct gene modules regulating each latent.

Hierarchical clustering of latent variables based on gene attribution profiles revealed

modular structures, where sets of genes co-regulated subsets of latent nodes. For instance,

Page | 18



Results

i [ ndnd Pl

Mean Attribution Score

DDX43
1 EABPA 0.0055
= RP11
h RAP1GAP2
] WDRA41
KCNKS 0.0050
ﬂ XIST
h SAA2-SAA4
ZNF839
CTH
il ERC2 0.0045
GATA3
. KIAA0020
h PDK3
h BIWDA 0.0040
RPARP-AS1
F. ENO3
h HAPLN1
h GSTT2
SLC9A7 0.0035
oy
B regulation of nervous system development- ‘ -log10_padj
DNA integration- . : ::é
Glucagon signaling pathway- . 3 ;'z
Cushing syndrome-{ [&] O G 2'2
® 2
Vibrio cholerae infection- . 2.4
Golgi lumen acidification - ()
tRNA metabolic process O
ECM-receptor interaction - .
Glyoxylate and dicarboxylate metabolism-{ ‘
cellular response to 2,3,7,8-tetrachlorodibenzodioxine -
response to 2,3,7,8-tetrachlorodibenzodioxine - .
Base excision repair- .
RNA degradation- o
neuromuscular junction development - ‘
regulation of response to external stimulus- O
T 3 .

AR N D P e
Latent Node

2

Figure 3.3: Interpretation of PEM latent variables through gene attribution and

pathway enrichment. (4) Heatmap showing the mean Integrated Gradients attribution

scores of the top 20 genes across all 50 latent variables. Both rows (genes) and columns

(latents) were hierarchically clustered, revealing modular structures among gene-latent

relationships. (B) Dot plot summarizing the most significantly enriched biological

pathways for selected latent variables. Each dot represents a latent-pathway pair, with dot
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size and color corresponding to the enrichment significance (—logio padj). [Figure

generated using Python v3.12].

Latents 24, 25, and 28 clustered closely and shared top-contributing genes involved in lipid

metabolism and oxidative stress response, such as FABP4, CTH, and SAA2-SAAA4.

Figure 3.3B illustrates the g: Profiler enrichment analysis of top-ranking genes from
individual latent variables. Each dot represents a significantly enriched biological process,
mapped to its corresponding latent node. Several latent variables were linked to distinct
and functionally relevant pathways. For example, Latent 9 showed strong enrichment for
DNA integration, suggesting potential involvement in genomic stability or viral interaction
processes. Latent 20 was enriched for Golgi lumen acidification and Golgi-associated
signaling, indicating a role in intracellular trafficking and post-translational modification.
Latent 5 was associated with regulation of nervous system development, while Latent 33
was enriched for ECM-receptor interaction, pointing toward microenvironmental and
adhesion-related mechanisms. Pathways related to RNA degradation (Latent 39), base
excision repair (Latent 34), and neuromuscular junction development (Latent 45) were also
identified, reflecting the biological diversity embedded within the latent dimensions. A
complete table of enriched pathways, including adjusted p-values, enrichment scores, and

associated gene sets for all 50 latent, is provided in Appendix II.

3.4 Functional Characterization of Latent Variables via GSEA

To further evaluate the functional relevance of the latent space, we performed Gene Set
Enrichment Analysis (GSEA) using the ranked gene attributions for each of the 50 latent
variables and visualized the results in a pathway—latent heatmap (Figure 3.4A). The
heatmap displays the Normalized Enrichment Scores (NES) across a curated panel of
KEGG pathways, capturing the direction and magnitude of enrichment. Red tones indicate

positive enrichment (NES > 0), whereas blue tones indicate negative enrichment (NES <
0).

Several latent variables were significantly enriched for known cancer-related and immune-
related pathways. Latent 6 and Latent 21 were positively enriched for Ribosome and
Oxidative Phosphorylation, processes often upregulated in proliferative tumor cells. Latent
15 and Latent 24 showed strong positive enrichment in immune pathways such as JAK-
STAT signaling, Cytokine—cytokine receptor interaction, and Antigen processing and

presentation. Latent 36 and Latent 48 were associated with Mismatch repair, Fanconi
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anemia, and Cell cycle, indicating potential links to genomic instability. Negative

enrichment was observed for several inflammation-related pathways (e.g., Inflammatory

bowel disease, Primary immunodeficiency, NF-kappa B signaling), particularly in Latents

3,9, and 18. Other Results of GSEA mentioned in Appendix III.
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Figure 3.4: Pathway enrichment heatmap of PEM latent variables using GSEA.

Heatmap shows NES for pathways enriched across 50 latent variables. Each row represents

a pathway and each column a latent node. Red shades indicate positive enrichment (NES

> ()) and blue shades indicate negative (NES < 0). [Figure generated using Python v3.12].
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Figure 3.5: Identification of key driver genes and classification performance in
oropharyngeal carcinoma. (4) Violin plots showing the expression distributions of 20
consensus genes, derived from PEM latent space attribution scores, across control and
oropharyngeal OC samples in an external high-throughput RNA-seq dataset. (B)
Precision—Recall (PR) curves comparing three supervised deep learning models trained on
the expression profiles of the 20 genes. (C) Receiver operating characteristic (ROC) curves

for the same models. [Figure generated using Python v3.12].

3.5 Deep Learning-Based Classification of Candidate Driver Genes in
Oropharyngeal Carcinoma

To visualize the expression profiles of the 20 candidate driver genes across control and OC
samples, we generated violin plots (Figure 3.5A) and boxplots in Appendix IV. Several
genes exhibited substantial differential expressions between the two groups. Notably,
RAP1GAP2, CTH, and FABP4 were highly expressed in OC samples compared to controls,
suggesting their potential role as diagnostic or functional markers. Conversely, genes like
XIST and ERC2 displayed more variable patterns, hinting at subtype-specific or
microenvironmental influences. We then assessed the ability of the 20-gene panel to
classify OC using supervised deep learning models. As shown in the performance plots
(Figure 3.5B & C), the MLP model consistently outperformed CNN and LSTM across all
evaluation folds. The MLP achieved a mean AUPRC of 0.86 and mean AUROC of 0.80,
followed by the CNN with an AUPRC of 0.81 and AUROC of 0.79, and the LSTM with an
AUPRC 0f 0.78 and AUROC of 0.70.

These results indicate that the MLP model is best suited for classifying OC based on the
selected latent-informed gene set. The consistently high AUPRC and AUROC suggest that
the PEM-derived genes, particularly RAP1GAP2, PDK3, and FABP4, may serve as
effective driver markers or classifiers for oropharyngeal carcinoma in high-throughput

transcriptomic data (Table 3.1), (Appendix V).

3.6 RAP1GAP2 Emerges as the Most Predictive Gene in Single-Feature
Classification Models

To identify the most predictive gene within the consensus panel, we trained single-feature
models for each of the 20 genes and computed their individual feature importances using
the supervised MLP model described previously. The resulting importance scores are

visualized in Figure 3.6A, where RAP1IGAP2 ranked as the most informative gene,
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followed closely by XIST, SLC9A7, and FABP4. This suggests that RAP1GAP2 holds

strong discriminative power for separating oropharyngeal carcinoma from control samples,

reinforcing its prominence in both latent attribution analysis and expression profiling.

To validate its predictive strength, we constructed a single-gene MLP classifier using only

the expression values of RAP1GAP2. The resulting Precision—Recall curve, shown in

Figure 3.6B, achieved a mean AUPRC of 0.769, indicating robust classification

performance using this gene alone. This further supports the hypothesis that RAP1GAP2

may serve as a potent driver or biomarker of oropharyngeal carcinoma and warrants further

experimental validation.

Table 3.1 Performance metrics for single-gene classification models

Gene AUROC AUPRC Accuracy F1  Precision Recall
WDR41 0.640 0.650 0.556 0.711 0.560 0.971
KCNKS3S 0.540 0.560 0.524 0.686 0.545 0.924
GATA3 0.590 0.580 0.620 0.667 0.657 0.676
DDX43 0.550 0.570 0.513 0.629 0.550 0.733
DTWD1 0.650 0.640 0.535 0.679 0.554 0.876

XIST 0.594 0.708 0.540 0.688 0.556 0.905

SAA2-SAA4 0.557 0.621 0.556 0.709 0.561 0.962

ERC2 0.550 0.560 0.610 0.709 0.610 0.848

ENO3 0.610 0.590 0.567 0.722 0.565 1.000
SLCI9A7 0.710 0.710 0.594 0.689 0.604 0.800

CTH 0.590 0.590 0.604 0.711 0.603 0.867

PDK3 0.570 0.600 0.567 0.675 0.583 0.800
GSTT2 0.643 0.664 0.642 0.735 0.628 0.886
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Figure 3.6: RAP1GAP2 identified as the top predictive gene for oropharyngeal
carcinoma classification. (4) Feature importance scores for each of the 20 genes in the
supervised MLP model. RAPIGAP2 ranked highest, suggesting its dominant role in
classification. (B) Precision—Recall curve for the single-gene classifier trained exclusively
on RAP1GAP2 expression. The model achieved a mean AUPRC of 0.769, indicating strong
predictive capacity from this gene alone. [Figure generated using Python v3.12].
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Figure 3.7: Identification of RAP1GAP?2 as a latent driver despite non-significance in
differential expression analysis. (4) Raw gene expression across samples before

normalization. (B) Normalized expression profiles of all samples. (C) Volcano plot of
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differential gene expression analysis: upregulated, downregulated, and non-significant
genes are shown. RAPIGAP2, highlighted in red, was not significantly differentially
expressed but was identified as a top contributor across all latent variables and showed the
highest classification ability in the deep learning model, supporting its role as a hidden
driver in oropharyngeal carcinoma. [Figure generated using R v4.3.2 with RStudio

v2023.09.1].

3.7 RAP1GAP2 Emerges as a Key Latent Driver Despite Non-
Significance in Differential Expression Analysis

Figure 3.7A & B show the gene expression distributions of the RNA-seq datasets before
and after normalization, respectively. Figure 3.7A illustrates the raw, unnormalized

transcript counts, highlighting variability across samples.

In contrast, Figure 3.7B demonstrates the effect of DEseq2 normalization, resulting in
more comparable and standardized expression profiles across all samples, ensuring the

reliability of downstream analyses.

However, differential gene expression (DGE) analysis failed to identify RAP1GAP2 as
significant in LFC values. As shown in Figure 3.7C, RAP1GAP2 resides within the "not
significant" region of the volcano plot, indicating that it was not differentially expressed

based on standard thresholds (log2 fold change and FDR-adjusted p-value).
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4.1 Discussion

This study employed a deep learning framework to reveal novel molecular patterns and
latent drivers overlooked by traditional methods, utilizing transcriptome data from
oropharyngeal cancer (OC). We successfully reduced the data to 50 low-dimensional,
biologically interpretable latent variables by training a variational autoencoder on high-
dimensional gene expression matrices. By maintaining essential variation among samples,
these latent traits enabled downstream modeling to reveal functional insights. A 50-
dimensional embedding yielded the optimal balance between biological richness and
training error when evaluating the reconstruction quality of the PEM across various latent
dimensionalities (Figure 3.1). The model's capacity to delineate the underlying illness
structure was emphasized by the UMAP display of the acquired embeddings, which
distinctly segregated the OC subgroups (Figure 3.2).

Integrated Gradients were employed to quantify the contribution of each gene to each latent
dimension, thereby enhancing the understanding of the biological relevance of these
representations. The analysis revealed the presence of high-attribution gene sets that were
not restricted to individual dimensions but were also enriched for key biological pathways,
as identified through Gene Ontology and KEGG annotations (Figure 3.4). Several latent
variables were associated with biological processes such as cell adhesion, immune
signaling, and extracellular matrix remodeling—mechanisms commonly implicated in
tumor progression. In many cases, high-contribution genes appeared recurrently across
multiple latent dimensions, indicating that shared biological programs may be embedded
within distinct transcriptomic patterns. These results confirmed that the latent space
captured by the model reflects physiologically meaningful signals and provided

justification for further examination of genes contributing across dimensions.

This study aimed to investigate the molecular intricacies of oropharyngeal cancer (OC) via
a deep learning analytical framework that transcends the limitations of conventional
differential gene expression techniques. Utilizing a probabilistic embedding model (PEM)
grounded on a neural network framework, and subsequently applying gene attribution
through integrated gradients, we identified 50 latent dimensions that encapsulate
compressed, physiologically significant transcriptome patterns. The latent dimensions were
enriched for specific gene programs and biological pathways (Figure 3.3, 3.4), uncovering
concealed aspects of OC biology not addressed by conventional linear methods.

RAPI1GAP2 appeared as a notably consistent and discriminative component among the
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genes contributing to these latent traits (Figure 3.6). Despite its robust latent-space
attribution and efficacy as a single-gene classifier (AUPRC = 0.77), RAPIGAP2 was not
deemed significant in LFC in the differential expression study (Figure 3.7C). The disparity
between statistical insignificance and biological significance underscores the fundamental
value of our approach—deep generative models can reveal non-linear molecular

determinants that traditional methods may overlook.

Our results align with and contribute to the existing knowledge in the subject. Researchers
have long recognized that the Ras-related GTPase Rapl and its regulators influence the
adhesion and motility of cancer cells (Zhang et al. 2017). Active Rapl signaling has been
demonstrated to enhance the invasiveness of head and neck malignancies by inducing the
production of B-catenin and MMP7 (Zhang et al. 2017). Conversely, the established Rapl
inactivator RaplGAP (a paralog of RAP1GAP2) is recognized for its ability to inhibit
Rap1-ERK signaling and tumor proliferation (Zhang et al. 2006). Our identification of
RAPI1GAP2 enhances this paradigm while introducing a novel element. RAPIGAP2
functions as a pro-invasion factor, whereas Rap1GAP broadly inhibits HNSCC growth
(Zhang et al. 2006). Upon examining the entirety of the situation, this seeming
contradiction becomes comprehensible: Rapl regulators frequently exert disparate effects
on various cell types (Zhang et al. 2017). Research indicates that Rapl GAP often inhibits
invasion in various malignancies; but, in certain instances, elevated levels of Rapl GAP
may enhance cellular invasiveness (Zhang et al. 2017). Our findings indicate that
oropharyngeal carcinoma exemplifies a scenario in which RAP1GAP2, functioning in a
specific cellular region, promotes cancer proliferation. This constitutes a novel discovery,
as RAP1GAP2 has not been previously examined in oropharyngeal cancer; it was

essentially an obscured driver identified by our latent-space profiling.

We identified additional latent drivers, including PDK3 and FABP4, that corroborate the
biological validity of our methodology. PDK3 (pyruvate dehydrogenase kinase 3) is a
recognized mediator of the Warburg effect and is increased in hypoxic malignancies,
resulting in metabolic reprogramming and aggressive behavior (Lu et al. 2011). FABP4
(fatty acid-binding protein 4) facilitates tumor metastasis and treatment resistance by
accelerating lipid transport and signaling in cancer cells (Sun and Zhao 2022). Our model
appears to have encapsulated significant characteristics of cancer, such as metabolic
plasticity and microenvironmental adaptation, alongside the Rapl signaling axis. The

presence of PDK3 and FABP4 among our principal latent genes demonstrates this. The
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alignment of our data-driven discoveries with established cancer pathways corroborates the
outcomes of our study. We have identified a novel driver (RAPIGAP2) and an
accompanying array of genes implicated in oropharyngeal cancer invasion and
demonstrated that deep neural profiling can uncover biologically significant targets

overlooked by conventional techniques.
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Figure 4.1: Schematic model illustrates the proposed role of RAP1GAP2 in promoting

invasion and metastasis in OC. [Figure generated using Adobe Illlustrator v27.8.1].

RAPI1GAP2 is a GTPase-activating protein (GAP) for Rapl (Johansen et al. 2023). It
changes active GTP-bound Rap1 into an inactive GDP-bound state, which changes how
cells stick together and send signals. Active Rapl stabilizes integrins and E-cadherins,
which helps cells stick together and keeps epithelial cells looking like epithelial cells (Price
et al. 2004). RAP1GAP2 stops Rapl from working, which breaks up these stable
interactions and makes cells lose their ability to stick together. This is necessary for tumor

cells to start moving and invading.
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RAPI1GAP2 inactivates Rapl, which not only stops adhesion but also stops Rapl from
stopping Ras—-MAPK/ERK signaling. This makes the ERK pathway more active (Zhang et
al. 2017). ERK signaling helps cells grow, move, and turn on invasive genes, such as matrix

metalloproteinases (MMPs). This makes tumors even more aggressive (Mitra et al. 2008).

RAP1GAP2 also affects how tumors invade by changing how vesicles move around. It
works with the synaptotagmin-like protein 1 (Slp1) and Rab27 complex to control secretory
vesicles that come from the Golgi apparatus (Neumiiller et al. 2009; Li et al. 2018). This
interaction leads to the release of enzymes that break down the matrix, like MMP-2 and
MMP-9, into the extracellular space. This makes it easier for tissues to break down and

makes them more invasive (Mitra et al. 2008; Beroun et al. 2019).

So, RAP1GAP2 controls a coordinated, multi-dimensional invasion strategy: it weakens
cellular adhesion, turns on pro-invasive ERK/MAPK signaling, and boosts Golgi’s ability
to secrete proteases (Guo et al. 2020). This integrated mechanism shows how RAP1GAP2
can help metastasis even though it acts as a Rapl inhibitor. Future experiments can test
whether changing the expression of RAP1GAP2 affects the strength of cell adhesion, the
levels of ERK activation, and the release of invasive factors. This would confirm its many
roles in the progression of oropharyngeal carcinoma. Notably, this latent driver effect of
RAPI1GAP2 is captured by our model despite its lack of prominence in linear analysis,
indicating that its contribution, while subtle at the expression level, is indeed biologically
significant. Overall, the identification of RAP1IGAP2 through latent-space analysis—
supported by attribution, classifier performance, and mechanistic plausibility—highlights
both the biological relevance of this gene and the power of our approach to reveal novel

drivers in oropharyngeal carcinoma.

4.2 Limitations of the Study
Based on integrative analyses of transcriptomic data, our study identifies RAP1GAP2 as a
promising computationally predicted driver gene in oropharyngeal carcinoma (OC). To

preserve a fair interpretation, a few restrictions must be noted.

First off, we didn't carry out functional tests to confirm RAP1GAP2's involvement in
cellular functions like invasion and metastasis. Therefore, our results are still correlative,
and there is no proof that RAP1GAP2 causes tumor behavior. Second, even with batch
effect correction and gene harmonization, heterogeneity is introduced because we used

retrospective integration of several public datasets from various platforms and clinical
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subgroups. Variations in tumor subsite, treatment history, and HPV status could affect the
latent features that are extracted. Third, some candidate genes (such as RAPIGAP2)
showed only slight expression changes and might contribute to false positives because our
machine learning pipeline gave predictive power precedence over statistical significance.
Although this risk was reduced by cross-validation, biological significance still needs to be
ascertained through experimentation. Furthermore, we were unable to assess the prognostic
significance of the identified drivers due to the restricted availability of comprehensive
clinical endpoints, such as survival and metastasis data. Lastly, we only looked at the
mRNA level, leaving out other regulatory mechanisms that could have a significant impact
on RAP1GAP2's function, like mutations, epigenetic changes, and post-translational
events. All of these drawbacks highlight the necessity of additional research that includes
multi-omic integration and experimental validation in order to completely clarify the

biological and therapeutic significance of our findings.

4.3 Future Directions

Our results provide several avenues for additional research to confirm and broaden the
biological significance of RAPIGAP2 in oropharyngeal carcinoma (OC). First and
foremost, functional validation is essential. RAP1GAP2's function would be directly tested
by knocking down or overexpressing it in OC cell lines and evaluating cell invasion, Rap1-
GTP activity, and downstream signaling (such as ERK/MAPK and MMP secretion). Its
pro-metastatic role may be further supported by in vivo models. RAP1GAP2's value as a
biomarker may be defined clinically by assessing its expression in larger patient cohorts or
tissue arrays, which may show associations with tumor stage, metastasis, HPV status, or

prognosis.

From a therapeutic standpoint, RAP1GAP2's downstream pathways, like MAPK signaling
or Rab27-mediated secretion, provide actionable targets, even though directly targeting it
may be challenging. Inhibitors of these effectors in RAP1GAP2-high models may be
investigated in future research. To find cross-layer or context-specific drivers, our deep
profiling framework can be methodologically extended to other cancers or combined with
proteomic and epigenetic data. New patterns may be found by applying the pipeline to

datasets related to head and neck cancer that are HP V-stratified.

Lastly, more research is necessary to fully understand the network of interactions between

latent drivers such as RAP1GAP2, PDK3, and FABP4. Studies on gene perturbation and
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systems biology may shed light on whether these genes are linked by common regulators
(like hypoxia) and provide combinatorial intervention points. Collectively, these avenues

will enhance our comprehension of the function of RAP1GAP2 and facilitate the realization

of our computational approach's translational potential.
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5. Conclusion

In summary, this study demonstrates that new cancer-causing factors can be identified by
combining deep learning with high-dimensional transcriptome data. We discovered that
RAPI1GAP2, a gene that is rarely observed to exhibit differential expression, might play a
secret role in regulating the invasion of other tissues by oropharyngeal cancer. This new
knowledge links biological mechanisms to data-driven modeling. It implies that these
cancers become more aggressive due to dysregulation of Rap1 signaling (via RAP1GAP2),
as well as modifications in metabolism and secretion. Our discussion demonstrates how
this finding aligns with our current understanding of cancer pathways and provides a fresh
perspective on and method for testing metastasis. We are one step closer to improved
prognostic tools and customized treatments for oral cancers now that RAP1GAP2 is
recognized as a molecular driver (Zhang et al. 2006). Ultimately, the study's methodology
and findings highlight the significance of looking beyond conventional research to
comprehend the intricate genetic elements influencing cancer behavior. This makes it
possible to conduct cancer genomics research using more comprehensive and innovative

methods.
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Appendix 11
Selected Latent Variable-Enriched Pathways
Pathway Name P-value Precision Recall Late
= nt
IS SJ e Nod
2 | 2|8 e
E |5 5
) ==
= | O 8
regulation of 0.02361861361 |45 |1 |5 |0.3125 0.01094091903 | 7
nervous system 51001 7 71991
development
DNA integration | 0.02879220888 | 10 | 1 |2 | 0.13333333333 | 0.2 9
18914 5 33333
Glucagon 0.01346418080 [ 10 |1 |3 |03 0.02803738317 | 18
signaling pathway | 35551 7 0 757
Cushing syndrome | 0.04995698970 | 15 |1 |3 |0.27272727272 | 0.01960784313 | 19
09377 3 1 72727 72549
Vibrio cholerae 0.02465554553 | 50 | 6 |2 |0.33333333333 | 0.04 20
infection 25596 33333
Golgi lumen 0.03705341619 | 13 |1 |2 | 0.15384615384 | 0.15384615384 | 20
acidification 63728 3 61538 61538
Cushing syndrome | 0.04995698970 | 15 |1 |3 | 0.27272727272 | 0.01960784313 | 23
09377 3 1 72727 72549
tRNA metabolic 0.04142636926 | 21 |1 |4 |0.22222222222 | 0.01904761904 | 25
process 39973 0 8 22222 7619
ECM-receptor 0.01014505429 | 89 |1 |3 |0.27272727272 | 0.03370786516 | 31
interaction 3642 1 72727 85393
Glyoxylate and 0.01218818077 | 30 |7 |2 | 0.28571428571 | 0.06666666666 | 34
dicarboxylate 7088 42857 66666
metabolism
cellular response 0.00384846936 | 4 1 |2 |0.13333333333 | 0.5 41
to 2,3,7,8- 49248 33333
tetrachlorodibenzo
dioxine
response to 0.01792993003 | 8 1 |2 |0.13333333333 | 0.25 41
2,3,7,8- 13183 33333
tetrachlorodibenzo
dioxine
Base excision 0.02636013607 | 44 |7 |2 | 0.28571428571 | 0.04545454545 | 42
repair 27707 42857 45454
RNA degradation | 0.04121332865 |79 |5 |2 |04 0.02531645569 | 43
59642 62025
neuromuscular 0.02153001876 | 54 |1 |3 | 0.15789473684 | 0.05555555555 | 47
junction 57582 21052 55555
development
regulation of 0.03907320842 | 10 |1 |7 | 0.36842105263 | 0.00646950092 | 47
response to 49658 82 15789 42144

external stimulus
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GSEA Info for Top 50 Pathways

Appendices

Term ES NES NOM p-val FDR g-val FWE Tag % | Gene late
Rp- % nt
val

Ribosome - - 0.0 0.0 0.0 64/112 | 30.62 0

0.2538932143878 3.1423241808411 %
554 97

Oxidative - - 0.0 0.0 0.0 70/86 56.60 0

phosphorylati | 0.2407197097865 2.6116739216508 %

on 659 73

Thermogenes - - 0.0 0.0 0.0 87/159 | 37.50 0

is 0.1589509040115 2.4056937312337 %

02 16
Taste - - 0.0 0.0 0.0 26/32 50.10 0
transduction 0.3048429308211 2.3501719140301 %

678 35

Epstein-Barr 0.0556416038563 0.8350148290636 0.6034482758620 1.0 1.0 115/17 | 59.99 0

virus 949 356 69 9 %

infection

Oxidative 0.1142496981063 1.2249093076286 0.1525423728813 0.7361948188317 1.0 52/86 50.47 1

phosphorylati 722 393 559 199 %

on

Epstein-Barr - - 0.3448275862068 0.6369253352905 1.0 62/179 | 25.54 1

virus 0.0756836049783 1.1357622653143 966 851 %

infection 082 702

Thermogenes 0.0748845499516 1.0927577331087 0.2948717948717 0.8631416491166 1.0 134/15 | 77.74 1

is 672 608 949 021 9 %

Ribosome 0.0936709992384 1.0621660292973 0.3787878787878 0.8778851648488 1.0 24/112 | 13.53 1

217 25 788 162 %
Taste - - 0.4444444444444 0.7495123224441 1.0 23/32 57.23 1
transduction 0.1334816003429 0.9706323778105 444 576 %
303 916
Ribosome - - 0.0 0.0 0.0 82/112 | 40.25 2
0.3256476601525 4.0225516504651 %
599 03

Oxidative - - 0.0 0.0 0.0 53/86 34.95 2

phosphorylati | 0.2609235596349 2.8374924290565 %

on 908 54

Epstein-Barr - - 0.0 0.0057049714751 0.06 88/179 | 33.48 2

virus 0.1484226108201 2.3752365815471 426 %

infection 942 905

Thermogenes - - 0.0975609756097 0.2926098272734 1.0 113/15 | 61.71 2

is 0.0882268099454 1.3402073272558 561 442 9 %

029 992
Taste - - 0.4888888888888 0.6908604815084 1.0 13/32 26.30 2
transduction 0.1332930651252 0.9230062434315 889 033 %

92 842

Oxidative - - 0.0 0.0 0.0 67/86 44.66 3

phosphorylati | 0.3275733015959 3.4001191113909 %

on 381 53

Ribosome - - 0.0 0.0 0.0 87/112 | 51.10 3

0.2617170297897 3.2861659380353 %
189 325

Epstein-Barr - - 0.0 0.0579973024510 0.56 88/179 | 37.69 3

virus 0.1059999709738 1.8620948304408 487 %

infection 502 6

Thermogenes - - 0.0 0.0682293846797 0.64 72/159 | 32.36 3

is 0.1212049069795 1.8205604074176 823 %

281 376
Taste - - 0.0256410256410 0.1659770744115 1.0 14/32 19.96 3
transduction 0.2244361798488 1.5172067052040 256 658 %
704 372
Ribosome - - 0.0 0.0 0.0 79/112 | 47.23 4
0.2232951808963 2.8364443956286 %
537 745

Oxidative - - 0.025 0.3228428314904 0.99 72/86 69.16 4

phosphorylati | 0.1384100937509 1.4848982031800 074 %

on 499 35

Taste - - 0.4193548387096 0.6523335661482 1.0 27/32 67.63 4

transduction 0.1599142914597 1.1002297033883 774 501 %

349 486

Thermogenes 0.0627232772891 0.8261903765388 0.7179487179487 0.8583973003841 1.0 139/15 | 82.01 4

is 256 551 18 902 9 %




Appendices

Epstein-Barr 0.0475756092253 0.6652826145585 0.8552631578947 0.9510038374797 1.0 101/17 | 53.24 4
virus 786 135 368 59 9 %
infection
Epstein-Barr -0.2321369172794 | - 0.0 0.0 0.0 76/179 | 18.53 5
virus 3.8752412064043 %
infection 895
Ribosome - - 0.0 0.0 0.0 87/112 | 53.96 5
0.2331264509898 3.0373310393102 %
629 21
Oxidative - - 0.0 0.0008765821089 0.01 68/86 57.49 5
phosphorylati | 0.2113046485189 2.5688251815532 591 %
on 271 457
Thermogenes 0.0767866793683 1.1101762451219 0.3225806451612 1.0 1.0 136/15 | 78.48 5
is 777 783 903 9 %
Taste - - 0.6666666666666 0.8161653728339 1.0 21/32 51.73 5
transduction 0.1278100605290 0.8108845295541 666 712 %
263 842
Ribosome - - 0.0 0.0 0.0 68/112 | 27.16 6
0.3293229152882 4.4509337108677 %
386 19
Oxidative - - 0.0 0.0 0.0 70/86 52.93 6
phosphorylati 0.2803922514121 2.9523157014033 %
on 083 363
Epstein-Barr - - 0.0 0.0 0.0 80/179 | 27.60 6
virus 0.1612168197723 2.8399022496034 %
infection 371 9
Thermogenes - - 0.0526315789473 0.1086496401862 0.98 102/15 | 52.93 6
is 0.1045309528713 1.6119871628753 684 565 9 %
468 508
Taste - - 0.9473684210526 0.9504021447721 1.0 22/32 59.83 6
transduction 0.0803663969469 0.5944365699407 316 18 %
782 909
Epstein-Barr - - 0.0 0.1176882575158 0.78 49/179 | 15.52 7
virus 0.1065109835343 1.7441063627334 902 %
infection 221 84
Ribosome 0.1120774229219 1.2798902470341 0.1076923076923 0.7245521177194 1.0 58/112 | 42.30 7
907 21 077 651 %
Oxidative 0.1081615732831 1.1195845010506 0.3442622950819 0.9349297823532 1.0 75/86 77.11 7
phosphorylati | 24 99 672 704 %
on
Thermogenes 0.0715029801756 1.0268194922167 0.4637681159420 0.9815923459967 1.0 129/15 | 75.05 7
is 083 353 29 548 9 %
Taste 0.1249958881658 0.8067070959874 0.6229508196721 1.0 1.0 23/32 61.00 7
transduction 193 992 312 %
Thermogenes 0.1367508982822 1.9891285890048 0.0 0.1958251871161 0.47 88/159 | 42.83 8
is 331 445 404 %
Ribosome 0.1454806205398 1.7462592473255 0.0408163265306 0.3844675970986 0.87 84/112 | 61.29 8
361 552 122 771 %
Oxidative 0.1309589399054 1.3715003663606 0.0666666666666 0.7863250756787 1.0 31/86 24.00 8
phosphorylati | 042 282 666 104 %
on
Epstein-Barr - - 0.1379310344827 0.4750103126804 1.0 105/17 | 50.05 8
virus 0.0775275389761 1.2408344861416 586 719 9 %
infection 539 116
Taste - - 0.5769230769230 0.8278352697259 1.0 12/32 23.35 8
transduction 0.1302957666471 0.8763585423530 769 158 %
551 01
Thermogenes - - 0.0 0.0240763092961 0.22 50/159 | 16.67 9
is 0.1337794037804 2.1003029810119 898 %
547 35
Oxidative - - 0.0 0.1199516123863 0.88 29/86 16.56 9
phosphorylati 0.1564861632838 1.6899188229068 745 %
on 065 458
Epstein-Barr - - 0.125 0.3780101242756 1.0 74/179 | 31.81 9
virus 0.0805443311691 1.3345202650671 428 %
infection 613 202
Ribosome - - 0.2222222222222 0.5218758215459 1.0 24/112 10.81 9
0.0944119478879 1.2113882241551 222 836 %
425 532
Taste 0.1425123191907 0.8988740228825 0.5555555555555 1.0 1.0 8/32 12.37 9
transduction 56 484 556 %
Ribosome - - 0.0 0.0025584472871 0.01 72/112 | 43.60 10
0.1971230410161 2.6788469240337 636 %
868 296
Epstein-Barr - - 0.0 0.0031980591089 0.02 85/179 | 29.82 10
virus 0.1636372192150 2.5400057344093 545 %
infection 541 52
Oxidative 0.1500924419982 1.5510957038556 0.0307692307692 0.3611661477497 0.99 52/86 46.85 10
phosphorylati 399 674 307 877 %
on
Thermogenes 0.1123031774550 1.5077141535503 0.0882352941176 0.4161262137117 0.99 90/159 | 46.85 10
is 938 211 47 119 %
Taste 0.1335782743774 0.8638481365202 0.65625 0.9752898173595 1.0 21/32 53.91 10
transduction 241 263 196 %
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Epstein-Barr - - 0.0 0.0014575470250 0.01 82/179 | 28.95 11
virus 0.1548800515752 2.4310472892938 698 %
infection 707 32
Oxidative 0.1182173254761 1.1944193154577 0.2622950819672 0.6175221922037 1.0 66/86 65.98 11
phosphorylati | 076 427 131 823 %
on
Thermogenes 0.0840036749263 1.1186199550959 0.28125 0.6860132448708 1.0 95/159 | 52.77 11
is 786 44 288 %
Ribosome - - 0.3823529411764 0.5760692258123 1.0 71/112 | 54.18 11
0.0782791132880 1.0479330673375 705 907 %
562 782
Taste - - 0.4883720930232 0.7009968306571 1.0 12/32 21.73 11
transduction 0.1423537900733 0.9466568114068 558 455 %
46 772
Ribosome - - 0.0 0.0280182897168 0.25 82/112 | 56.27 12
0.1590080895545 2.1120351349357 985 %
469 41
Oxidative - - 0.0810810810810 0.2967726739750 1.0 61/86 56.39 12
phosphorylati | 0.1324742005360 1.4618884159029 81 436 %
on 538 404
Epstein-Barr - - 0.1304347826086 0.3912372091377 1.0 61/179 | 24.35 12
virus 0.0828798991794 1.3064769028044 956 831 %
infection 913 512
Taste - - 0.2285714285714 0.4926908484063 1.0 9/32 10.31 12
transduction 0.1640753539772 1.2020766986467 285 849 %
809 593
Thermogenes 0.0430498109286 0.6098984184263 0.9350649350649 1.0 1.0 138/15 | 83.46 12
is 673 628 35 9 %
Thermogenes 0.1106799758428 1.5528444508611 0.1212121212121 0.5010353563167 1.0 84/159 | 43.54 13
is 105 32 212 75 %
Taste 0.1898271430862 1.2384391552528 0.2 0.8120975144105 1.0 8/32 7.70% | 13
transduction 881 35 445
Ribosome 0.1010080676659 1.1588001452808 0.2816901408450 0.7224988615683 1.0 57/112 | 42.36 13
86 16 704 561 %
Oxidative 0.0893802743756 0.9178164713944 0.5151515151515 0.7740193224552 1.0 75/86 79.11 13
phosphorylati 362 112 151 736 %
on
Epstein-Barr - - 1.0 0.9895624758934 1.0 162/17 | 86.23 13
virus 0.0369440849574 0.5773223972275 112 9 %
infection 122 305
Ribosome - - 0.0 0.0 0.0 70/112 | 36.31 14
0.2499602236106 3.4028110229668 %
113 32
Oxidative - - 0.0 0.0 0.0 58/86 40.98 14
phosphorylati | 0.2533110757351 2.8823733635911 %
on 272 024
Epstein-Barr - - 0.0 0.0026311111111 0.01 89/179 | 34.09 14
virus 0.1403322253608 2.5636151130605 111 %
infection 299 28
Thermogenes - - 0.2941176470588 0.5246178861788 1.0 110/15 | 60.17 14
is 0.0782485007267 1.1257550331930 235 618 9 %
294 222
Taste 0.1120801633981 0.7121301279549 0.8653846153846 1.0 1.0 29/32 79.91 14
transduction 848 598 154 %
Epstein-Barr - - 0.0 0.0 0.0 58/179 | 15.80 15
virus 0.1564731165548 2.6231667792912 %
infection 349 323
Oxidative - - 0.0714285714285 0.1606630509590 1.0 45/86 37.13 15
phosphorylati | 0.1427779365221 1.5459902681911 714 157 %
on 995 917
Ribosome - - 0.4473684210526 0.6350407605087 1.0 64/112 | 47.89 15
0.0835052583452 1.0457258246958 316 761 %
637 143
Thermogenes 0.0685810193717 0.9241792850269 0.609375 0.9146829405107 1.0 86/159 | 48.40 15
is 143 684 706 %
Taste - - 0.7021276595744 0.8587691414210 1.0 22/32 56.79 15
transduction 0.1089751365711 0.8046743421424 681 2 %
126 567
Oxidative - - 0.0 0.0135284910529 0.1 70/86 61.20 16
phosphorylati | 0.1934690155536 2.2579171436828 21 %
on 926 2
Thermogenes - - 0.0 0.0243252675663 0.25 118/15 | 61.23 16
is 0.1199857130176 2.0590114667603 099 9 %
65 91
Ribosome - - 0.2413793103448 0.5549282964592 1.0 93/112 | 72.43 16
0.0986916187640 1.2343055799625 276 411 %
376 748
Epstein-Barr - - 0.25 0.5515253606328 1.0 121/17 | 59.04 16
virus 0.0735439406826 1.2010141513757 525 9 %
infection 843 822
Taste - - 0.6538461538461 0.8495865697820 1.0 15/32 31.04 16
transduction 0.1417973572809 0.9239386376720 539 095 %
813 244
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Ribosome - - 0.0 0.0402945619335 0.44 86/112 | 61.80 17
0.1429843414461 1.9351322203883 347 %
468 43
Epstein-Barr - - 0.0 0.1405948784347 0.95 86/179 | 37.03 17
virus 0.0989803694223 1.6377537736470 576 %
infection 771 795
Oxidative - - 0.0294117647058 0.1873047842836 0.98 47/86 40.21 17
phosphorylati | 0.1321516800386 1.5503137660883 823 362 %
on 444 377
Thermogenes - - 0.8709677419354 0.9325568175837 1.0 80/159 | 44.25 17
is 0.0495010447489 0.7532720687120 839 132 %
337 83
Taste 0.0837504809450 0.5391166734889 1.0 0.9862752920198 1.0 18/32 49.33 17
transduction 444 357 86 %
Ribosome - - 0.0 0.0 0.0 67/112 | 36.08 18
0.2300643695538 3.0326377472614 %
789 51
Oxidative - - 0.0 0.0030002293168 0.03 61/86 47.80 18
phosphorylati | 0.2258420027873 2.4269696641982 904 %
on 637 08
Epstein-Barr - - 0.0 0.0060671303963 0.07 66/179 | 19.74 18
virus 0.1634367130823 2.3127360201179 784 %
infection 65 96
Thermogenes - - 0.6428571428571 0.7158308325876 1.0 137/15 | 80.28 18
is 0.0540860555409 0.8808549381934 429 414 9 %
017 389
Taste 0.0903422763299 0.5715602775591 0.9423076923076 0.9854396948327 1.0 12/32 29.38 18
transduction 656 783 924 132 %
Ribosome - - 0.0 0.0 0.0 80/112 41.74 19
0.2865315189205 3.5741418374315 %
287 392
Oxidative - - 0.0 0.0 0.0 40/86 22.24 19
phosphorylati | 0.2284104905830 2.4631593708013 %
on 11 453
Epstein-Barr - - 0.0 0.0473985890652 0.4 77/179 | 30.61 19
virus 0.1084580718550 1.9171496093342 557 %
infection 667 697
Thermogenes - - 0.1363636363636 0.4203445605884 1.0 132/15 | 73.22 19
is 0.0895152851569 1.3276471046020 363 63 9 %
006 3
Taste 0.1926586094746 1.1079070707887 0.3859649122807 0.8063496076781 1.0 30/32 74.82 19
transduction 618 402 017 06 %
Epstein-Barr - - 0.0303030303030 0.2999792957090 0.97 46/179 | 15.94 20
virus 0.0853369011310 1.5479124740309 303 357 %
infection 599 584
Ribosome - - 0.0666666666666 0.3707169657065 1.0 59/112 | 40.58 20
0.1077871147797 1.3732178053318 666 273 %
501 371
Taste - - 0.4722222222222 0.6979608190464 1.0 12/32 21.09 20
transduction 0.1473393589157 1.0153596695405 222 14 %
44 562
Thermogenes 0.0542222308163 0.7571389446423 0.7866666666666 0.9763971347870 1.0 150/15 | 89.39 20
is 235 754 666 776 9 %
Oxidative 0.0704483502934 0.7206262365493 0.8235294117647 0.9541908068839 1.0 84/86 90.89 20
phosphorylati | 994 948 058 632 %
on
Ribosome 0.2275438043622 2.5616655165777 0.0 0.0061374558508 0.01 72/112 | 42.71 21
52 05 482 %
Epstein-Barr - - 0.0 0.0037351456909 0.05 112/17 | 47.05 21
virus 0.1441302848400 2.3249466046355 816 9 %
infection 509 44
Taste 0.2050893693918 1.3499798123440 0.1639344262295 1.0 1.0 31/32 76.55 21
transduction 116 814 081 %
Oxidative - - 0.2258064516129 0.3921902975530 1.0 28/86 20.10 21
phosphorylati | 0.1140775226843 1.2261204071398 032 735 %
on 5 637
Thermogenes - - 0.9354838709677 0.9195708976744 1.0 152/15 | 91.18 21
is 0.0423312481418 0.7048522598483 42 42 9 %
022 786
Epstein-Barr - - 0.08 0.1372225279765 0.99 38/179 | 9.71% | 22
virus 0.1040991072613 1.5395196576693 18
infection 12 624
Ribosome - - 0.0666666666666 0.1478504771584 0.99 32/112 | 15.52 22
0.1188469970281 1.5179883663741 666 324 %
153 862
Oxidative - - 0.1666666666666 0.3499987708812 1.0 64/86 62.78 22
phosphorylati | 0.1063207806531 1.2234510409142 666 442 %
on 286 016
Taste - - 0.6571428571428 0.7833040746558 1.0 17/32 39.94 22
transduction 0.1162346220625 0.8115098576982 571 256 %
998 108
Thermogenes 0.0308342620424 0.4293938133054 1.0 0.9970842273202 1.0 29/159 | 16.15 22
is 767 199 398 %
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Epstein-Barr - - 0.0 0.0081440791451 0.04 94/179 | 36.77 23
virus 0.1490222125794 2.4517198895361 449 %
infection 351 614
Oxidative - - 0.0 0.0470320570632 0.42 71/86 63.12 23
phosphorylati | 0.1900501123715 1.9093101811763 122 %
on 608 79
Taste - - 0.1428571428571 0.3487975389103 1.0 10/32 12.03 23
transduction 0.1815968266524 1.3009534103446 428 511 %
949 785
Thermogenes - - 0.3030303030303 0.5208393115793 1.0 61/159 | 29.92 23
is 0.0755688546724 1.0832749743737 03 502 %
218 218
Ribosome 0.0520079995085 0.6413917946548 0.8679245283018 0.9554250706830 1.0 53/112 | 43.18 23
884 4 868 07 %
Oxidative - - 0.0 0.0010142228443 0.01 46/86 31.19 24
phosphorylati | 0.2140088342006 2.5581159053371 316 %
on 968 945
Epstein-Barr - - 0.0 0.0009466079880 0.01 60/179 | 16.72 24
virus 0.1580411043735 2.5502780822096 428 %
infection 501 85
Taste - - 0.2156862745098 0.3142951241198 1.0 17/32 32.98 24
transduction 0.1907365919825 1.2939274158627 039 439 %
491 64
Ribosome - - 0.3103448275862 0.4815245370754 1.0 106/11 85.90 24
0.0860341248910 1.1004974235817 069 795 2 %
368 673
Thermogenes - - 0.3333333333333 0.5077702335860 1.0 117/15 | 65.75 24
is 0.0711413956891 1.0751266704488 333 602 9 %
996 225
Thermogenes 0.1659622741611 2.2467535634369 0.0 0.0411352253756 0.17 116/15 | 57.68 25
is 206 544 26 9 %
Oxidative 0.1888723510224 2.1665786495591 0.0 0.0467445742904 0.25 40/86 29.28 25
phosphorylati | 07 65 841 %
on
Ribosome - - 0.0285714285714 0.1290420066485 0.64 69/112 | 44.77 25
0.1565338198474 1.8607252802865 285 343 %
687 64
Taste - - 0.1489361702127 0.5870489573889 1.0 11/32 16.31 25
transduction 0.1665415002572 1.2417514094893 659 394 %
56 585
Epstein-Barr - - 0.8888888888888 0.9572471118372 1.0 148/17 | 77.11 25
virus 0.0471492858169 0.7532115728269 888 036 9 %
infection 478 66
Epstein-Barr - - 0.0 0.0252861368312 0.23 103/17 | 44.77 26
virus 0.1120298340814 2.0146072424615 757 9 %
infection 006 937
Oxidative - - 0.03125 0.1078765707671 0.75 44/86 33.41 26
phosphorylati | 0.1609719325626 1.7046833340244 957 %
on 107 654
Ribosome - - 0.15 0.3313058609825 1.0 73/112 | 53.04 26
0.1061645417419 1.3642996693988 103 %
538 605
Taste 0.1592193386692 1.0458250483076 0.3461538461538 0.9616015093405 1.0 10/32 17.21 26
transduction 686 112 461 912 %
Thermogenes 0.0563497911713 0.7360008639741 0.8260869565217 0.9576472894762 1.0 90/159 | 52.59 26
is 277 472 391 056 %
Ribosome - - 0.0 0.0 0.0 89/112 | 58.81 27
0.1964814337453 2.4963696199418 %
577 77
Epstein-Barr - - 0.0 0.0035433331129 0.02 102/17 | 42.99 27
virus 0.1227396672517 2.3773259664604 767 9 %
infection 917 32
Taste - - 0.6415094339622 0.7677272654741 1.0 11/32 21.36 27
transduction 0.1162051089342 0.8434816132145 641 58 %
08 562
Thermogenes 0.0549077516421 0.7168894036733 0.8412698412698 0.9068752813784 1.0 62/159 | 35.14 27
is 173 295 413 474 %
Oxidative - - 0.9117647058823 0.9522364394893 1.0 33/86 30.82 27
phosphorylati | 0.0615741373995 0.6477804376991 528 263 %
on 872 224
Epstein-Barr - - 0.0 0.0 0.0 77/179 | 25.63 28
virus 0.1655189474382 2.8709582269174 %
infection 541 52
Ribosome - - 0.0 0.0 0.0 80/112 | 50.28 28
0.2069016676747 2.8002326767081 %
544 95
Thermogenes 0.1313157689829 1.8849418718563 0.0 0.4625279304305 0.67 110/15 | 56.99 28
is 146 5 816 9 %
Taste - - 0.3913043478260 0.6522519625967 1.0 30/32 78.87 28
transduction 0.1471600495573 0.9981835364480 87 902 %
211 396
Oxidative - - 0.7 0.8582578190109 1.0 85/86 91.65 28
phosphorylati | 0.0719395400172 0.7948374235753 95 %
on 545 343
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Ribosome - - 0.0 0.0 0.0 77/112 | 31.66 29
0.3640114664957 4.4477333671435 %
908 93
Oxidative - - 0.0 0.0 0.0 57/86 37.99 29
phosphorylati | 0.2743933145830 3.2674971897351 %
on 459 76
Thermogenes - - 0.0227272727272 0.0196933560477 0.24 96/159 | 46.08 29
is 0.1322448508758 2.0850669247592 727 001 %
917 69
Epstein-Barr 0.0919162478505 1.2637288151803 0.1571428571428 0.5393307349274 1.0 58/179 | 24.48 29
virus 591 443 571 904 %
infection
Taste - - 0.6 0.9666477380276 1.0 15/32 31.53 29
transduction 0.1409379951415 0.9495072224306 356 %
683 784
Oxidative - - 0.0 0.0 0.0 69/86 53.33 30
phosphorylati 0.2601385384155 3.0084033219089 %
on 186 17
Ribosome - - 0.0 0.0 0.0 73/112 | 41.60 30
0.2225102822614 2.9368797355344 %
033 225
Thermogenes - - 0.0 0.0964372318597 0.76 114/15 | 59.59 30
is 0.1091719810812 1.7218181735948 276 9 %
835 006
Taste - - 0.2325581395348 0.4385299727053 1.0 26/32 63.47 30
transduction 0.1681589880592 1.1892261384806 837 663 %
587 169
Epstein-Barr 0.0557083601545 0.8433363336922 0.625 0.7871948695747 1.0 25/179 | 9.59% | 30
virus 044 206 323
infection
Ribosome - - 0.0 0.0 0.0 67/112 | 27.76 31
0.3088603817864 4.5095090913599 %
165 805
Oxidative - - 0.0 0.0067149673087 0.03 46/86 29.19 31
phosphorylati | 0.2280577290437 2.6330109611111 117 %
on 473 74
Thermogenes - - 0.0357142857142 0.1765077121147 0.94 58/159 | 24.24 31
is 0.1089243720432 1.6118959971372 857 098 %
984 937
Taste 0.1692150451803 1.1212167825319 0.2666666666666 1.0 1.0 8/32 9.57% | 31
transduction 977 377 666
Epstein-Barr - - 0.5625 0.8275281530626 1.0 108/17 | 53.43 31
virus 0.0540938598818 0.8876800724429 998 9 %
infection 739 279
Ribosome - - 0.0 0.0 0.0 51/112 18.35 32
0.2578530355840 3.3293167450572 %
409 5
Oxidative - - 0.0 0.0 0.0 55/86 32.65 32
phosphorylati | 0.3010482068914 3.2513049419491 %
on 579 33
Thermogenes - - 0.0 0.0 0.0 84/159 | 31.91 32
is 0.1950881150434 3.1460939081379 %
57 293
Taste - - 0.2391304347826 0.5808088388094 1.0 9/32 10.34 32
transduction 0.1598448791793 1.1499614807625 087 853 %
256 744
Epstein-Barr 0.0430492200213 0.6365137133053 0.8985507246376 0.9827247306416 1.0 116/17 | 61.99 32
virus 103 301 812 328 9 %
infection
Ribosome - - 0.0 0.0 0.0 85/112 | 39.11 33
0.3630708010063 4.7397826652520 %
278 94
Oxidative - - 0.0 0.0 0.0 70/86 50.74 33
phosphorylati 0.3017187042155 3.1660462403331 %
on 527 04
Thermogenes - - 0.0 0.0216223562388 0.33 107/15 | 52.73 33
is 0.1383763649312 2.0307768585270 516 9 %
712 07
Epstein-Barr - - 0.0344827586206 0.0902363833497 0.8 68/179 | 25.48 33
virus 0.1147388570848 1.7310233429711 896 384 %
infection 083 71
Taste - - 0.0980392156862 0.2118406523401 0.99 14/32 21.31 33
transduction 0.2120107719433 1.4890153730613 745 002 %
776 67
Oxidative - - 0.0 0.0 0.0 59/86 41.96 34
phosphorylati | 0.2545196538658 2.8534254575539 %
on 869 88
Epstein-Barr - - 0.0 0.0069618490671 0.08 101/17 | 40.64 34
virus 0.1406276819473 2.1993808397548 122 9 %
infection 865 52
Ribosome - - 0.0 0.0890740364424 0.86 55/112 | 33.62 34
0.1404734864995 1.6958172669378 574 %
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Taste - - 0.4772727272727 0.6694432158828 1.0 8/32 10.41 34
transduction 0.1327015686283 0.9523420525198 273 444 %
943 376
Thermogenes - - 0.5121951219512 0.6694621168305 1.0 46/159 | 21.19 34
is 0.0642275325875 0.9438060795186 195 378 %
987 816
Epstein-Barr - - 0.0 0.0103028113374 0.14 66/179 | 22.07 35
virus 0.1337794321853 2.1911135547340 597 %
infection 186 184
Thermogenes 0.1169191327605 1.5391984192601 0.0422535211267 0.8218183832899 1.0 88/159 | 45.25 35
is 175 724 605 328 %
Oxidative 0.0975026009723 1.0324645616114 0.4 0.9667967358698 1.0 53/86 53.19 35
phosphorylati 607 798 148 %
on
Taste - - 0.5957446808510 0.7538368738593 1.0 19/32 45.99 35
transduction 0.1216536857868 0.8727845560307 638 555 %
528 057
Ribosome - - 0.9393939393939 0.9753651291582 1.0 84/112 | 69.03 35
0.0485747667164 0.5931017707095 394 288 %
141 675
Oxidative - - 0.0 0.0 0.0 64/86 50.58 36
phosphorylati | 0.2263274299523 2.7372318837923 %
on 434 41
Thermogenes - - 0.0 0.0538910872432 0.44 93/159 | 44.78 36
is 0.1201911536898 1.9299521792350 636 %
513 136
Taste 0.2117787697472 1.3365944361544 0.1730769230769 0.5778762826788 1.0 24/32 55.02 36
transduction 15 937 23 498 %
Ribosome - - 0.125 0.3413102192073 1.0 49/112 | 31.63 36
0.1034471847868 1.2945477592320 362 %
074 158
Epstein-Barr - - 0.5 0.7001758683499 1.0 43/179 | 16.70 36
virus 0.0576208425867 0.9646737080773 78 %
infection 244 496
Ribosome - - 0.0 0.0 0.0 80/112 | 42.60 37
0.2780402190998 3.7626702164566 %
905 943
Oxidative - - 0.0 0.0303655660377 0.28 76/86 69.50 37
phosphorylati | 0.1833048188200 2.0503336167479 358 %
on 864 16
Epstein-Barr - - 0.0 0.1462421909509 0.86 102/17 | 46.10 37
virus 0.0958088948657 1.6294390632719 686 9 %
infection 161 38
Thermogenes - - 0.1666666666666 0.3955309627479 1.0 152/15 | 87.09 37
is 0.0836067027722 1.3190298606653 666 438 9 %
523 903
Taste 0.1273989683571 0.8722501590968 0.5762711864406 0.7863051117965 1.0 6/32 7.30% | 37
transduction 168 771 78 717
Thermogenes 0.1543315294185 2.1000213151528 0.0149253731343 0.2416159380188 0.42 97/159 | 47.08 38
is 555 71 283 157 %
Ribosome - - 0.0 0.0313967673071 0.19 88/112 | 63.77 38
0.1395500689620 2.0428100405841 058 %
349 603
Epstein-Barr - - 0.0 0.1635434045530 091 48/179 | 15.98 38
virus 0.0968682231117 1.5861196199728 38 %
infection 353 786
Oxidative 0.1404503366589 1.4065092972713 0.1166666666666 0.7813613724405 1.0 51/86 46.79 38
phosphorylati 868 316 666 091 %
on
Taste - - 0.5853658536585 0.7637583520474 1.0 23/32 57.40 38
transduction 0.1333043674603 0.9338256527433 366 647 %
921 02
Epstein-Barr - - 0.0 0.0779192913084 0.6 71/179 | 26.75 39
virus 0.1208544640341 1.8792193758859 126 %
infection 385 483
Ribosome - - 0.0277777777777 0.1330911766058 0.86 64/112 | 44.26 39
0.1214087761786 1.6738897666231 777 209 %
404 272
Oxidative - - 0.0909090909090 0.2296105568072 0.98 66/86 62.70 39
phosphorylati | 0.1337418025070 1.4844452740123 909 095 %
on 802 826
Taste - - 0.1333333333333 0.3064158024799 1.0 13/32 20.46 39
transduction 0.1912523199587 1.3816456726391 333 114 %
957 608
Thermogenes 0.0383834139505 0.5746257618987 0.9696969696969 1.0 1.0 140/15 | 84.73 39
is 656 081 696 9 %
Ribosome - - 0.0476190476190 0.1990882759126 0.9 96/112 | 71.95 40
0.1330614426196 1.6552021458471 476 407 %
696 902
Taste - - 0.0465116279069 0.2384375715795 1.0 9/32 6.79% | 40
transduction 0.1995615584775 1.5323371265715 767 661
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Oxidative - - 0.1707317073170 0.3859904273473 1.0 50/86 45.85 40
phosphorylati | 0.1128483370623 1.2799354987414 731 485 %
on 297 728
Thermogenes - - 0.4615384615384 0.6727154407149 1.0 47/159 | 21.68 40
is 0.0698022490763 0.9963950374822 615 333 %
07 887
Epstein-Barr - - 0.9333333333333 0.9560671357686 1.0 36/179 | 15.15 40
virus 0.0423759172324 0.6557109849000 332 714 %
infection 384 161
Oxidative - - 0.0 0.0 0.0 60/86 36.90 41
phosphorylati | 0.3178452567996 3.2308443138546 %
on 256 794
Ribosome - - 0.0 0.0 0.0 62/112 | 29.85 41
0.2398031423342 3.2183620427351 %
298 154
Epstein-Barr - - 0.0714285714285 0.1867903688977 1.0 94/179 | 41.80 41
virus 0.0925176446724 1.5139748150739 714 247 %
infection 106 774
Thermogenes - - 0.1388888888888 0.3620553104139 1.0 73/159 | 3591 41
is 0.0858185058777 1.2891483325508 889 39 %
302 557
Taste 0.1355329698643 0.9167825200406 0.6101694915254 0.8683607535453 1.0 11/32 22.45 41
transduction 851 078 238 032 %
Ribosome - - 0.0 0.0058554195650 0.03 47/112 | 24.40 42
0.1640123151182 2.2033014501858 259 %
866 85
Epstein-Barr - - 0.0 0.0156144521734 0.12 58/179 18.85 42
virus 0.1240266084660 2.0585535228846 026 %
infection 245 64
Oxidative - - 0.0789473684210 0.1642119886902 0.99 31/86 21.18 42
phosphorylati 0.1371541527892 1.5255224471587 526 84 %
on 488 14
Thermogenes 0.0720718234332 1.0664691857698 0.4 0.6857369966176 1.0 76/159 | 41.91 42
is 094 492 559 %
Taste 0.1515671345565 1.0309313938721 0.4230769230769 0.7313310413885 1.0 18/32 42.56 42
transduction 241 68 231 615 %
Oxidative - - 0.0 0.0 0.0 61/86 42.59 43
phosphorylati 0.2727001833743 3.2400327871522 %
on 558 09
Ribosome - - 0.0 0.0 0.0 54/112 | 26.37 43
0.2035206597539 2.6583790691907 %
268 123
Epstein-Barr - - 0.0 0.0455769077000 0.48 63/179 | 22.09 43
virus 0.1166104695400 1.9235375611382 986 %
infection 355 84
Thermogenes - - 0.0 0.0558676937018 0.64 118/15 | 60.51 43
is 0.1254676352054 1.8457547420625 577 9 %
362 61
Taste - - 0.9310344827586 0.9839238785681 1.0 5/32 6.19% | 43
transduction 0.0841319508329 0.5943039962466 208 922
352 512
Oxidative - - 0.0 0.0050045703839 0.03 45/86 27.77 44
phosphorylati | 0.2321417570446 2.6083797429053 122 %
on 411 66
Thermogenes - - 0.0 0.0033363802559 0.03 73/159 | 29.10 44
is 0.1553811792791 2.4138571901508 414 %
847 17
Epstein-Barr - - 0.0 0.0973110907982 0.78 65/179 | 24.97 44
virus 0.0995353249186 1.7774636988555 937 %
infection 391 75
Ribosome - - 0.1891891891891 0.5609355503322 1.0 94/112 | 74.95 44
0.0827061919968 1.1703424936817 892 596 %
07 148
Taste - - 0.8333333333333 0.9559267559120 1.0 18/32 43.30 44
transduction 0.1152252573035 0.7379242450079 334 128 %
39 108
Epstein-Barr - - 0.0 0.0028021015761 0.01 94/179 | 36.32 45
virus 0.1483740711922 2.5401627938768 821 %
infection 618 514
Ribosome - - 0.0 0.0196147110332 0.12 104/11 | 75.04 45
0.1752683634281 2.1107840486152 749 2 %
028 813
Thermogenes - - 0.0344827586206 0.1473697865992 0.9 91/159 | 46.24 45
is 0.0971470308528 1.6584616343711 896 086 %
347 849
Oxidative - - 0.1481481481481 0.4687428614939 1.0 33/86 26.02 45
phosphorylati 0.1096084072672 1.2988032557097 481 465 %
on 24 435
Taste - - 0.3076923076923 0.6719363847209 1.0 20/32 45.38 45
transduction 0.1551495073391 1.0785825390232 077 733 %
745 742
Ribosome - - 0.0 0.0499218630888 0.55 73/112 | 49.78 46
0.1431119957761 1.8722865029844 855 %
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Epstein-Barr - - 0.1481481481481 0.2911412835816 1.0 123/17 | 59.66 46
virus 0.0793189315278 1.3118898412789 481 963 9 %
infection 572 644
Thermogenes | 0.0936037460391 1.2548579471203 0.1969696969696 1.0 1.0 111/15 | 61.67 46
is 565 485 969 9 %
Oxidative 0.0813586157156 0.8352347040497 0.6470588235294 0.9734071341051 1.0 59/86 61.67 46
phosphorylati | 401 169 118 324 %
on
Taste - - 0.8235294117647 0.9181045592912 1.0 26/32 70.77 46
transduction 0.0950583728437 0.6570628315004 058 36 %
162 804
Epstein-Barr - - 0.0 0.1527238882643 0.83 70/179 | 27.11 47
virus 0.1052548510684 1.6942473121961 749 %
infection 108 907
Taste - - 0.1578947368421 0.5307371527555 1.0 27/32 66.92 47
transduction 0.1665622841165 1.1589575677115 052 014 %
926 576
Ribosome 0.0928670008454 1.0481938467277 0.3174603174603 0.9726296283829 1.0 60/112 | 46.00 47
053 976 174 868 %
Oxidative 0.0764689987773 0.8349208881250 0.6190476190476 0.9295712285133 1.0 27/86 25.32 47
phosphorylati | 298 927 191 726 %
on
Thermogenes | 0.0516962539223 0.663217811189%4 0.8947368421052 0.9660380807615 1.0 77/159 | 44.90 47
is 096 441 632 692 %
Ribosome - - 0.0 0.0 0.0 92/112 | 60.70 48
0.2086899163590 2.8344373214639 %
077 305
Oxidative - - 0.0 0.0289672920968 0.27 57/86 46.54 48
phosphorylati | 0.1847751109308 2.0669629644262 369 %
on 437 6
Taste - - 0.0344827586206 0.2290226531406 0.97 17/32 27.56 48
transduction 0.2350461769872 1.5705780859429 896 17 %
571 173
Epstein-Barr - - 0.0625 0.3207701610135 1.0 53/179 | 19.58 48
virus 0.0873852347574 1.4178785746948 031 %
infection 65 572
Thermogenes | 0.0805316014676 1.1124624427720 0.2876712328767 0.7825594377496 1.0 56/159 | 28.71 48
is 845 406 123 813 %
Oxidative - - 0.0 0.0094270547318 0.01 61/86 44.79 49
phosphorylati | 0.2510168501713 2.7585729333414 323 %
on 146 672
Thermogenes | - - 0.0 0.3296102350879 1.0 85/159 | 43.73 49
is 0.0826014889987 1.4245942022814 946 %
527 24
Epstein-Barr 0.1011614267036 1.4215808102880 0111111111111 0.4581956717621 1.0 46/179 | 17.31 49
virus 261 614 111 208 %
infection
Taste - - 0.35 0.6191689547867 1.0 20/32 46.14 49
transduction 0.1487174195437 1.1160397511139 472 %
644 348
Ribosome - - 0.6756756756756 0.9056015526361 1.0 109/11 | 90.87 49
0.0626830455571 0.8321608130739 757 488 2 %
333 544
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RAP1GAP2 (AUPRC=0.72)
SLCYA7 (AUPRC=0.71)
WDR41 (AUPRC=0.65)
DTWD1 (AUPRC=0.64)
PDK3 (AUPRC=0.60)
CTH (AUPRC=0.59)
ENO3 (AUPRC=0.59)
ZNF839 (AUPRC=0.59)
GATA3 (AUPRC=0.58)
GSTT2 (AUPRC=0.57)
DDX43 (AUPRC=0.57)
ERC2 (AUPRC=0.56)
HAPLN1 (AUPRC=0.56)
KCNK5 (AUPRC=0.56)
FABP4 (AUPRC=0.53)
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Figure Appendix IV: Precision—recall curves for the top 15 latent-space-contributing

Expression

genes.

Appendix V

Boxplot of Gene Expression by Condition (After Correction)
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Figure Appendix V: Boxplot of gene expression levels for the top latent contributors

across tumor (1) and control (0) conditions
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