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Abstract

Introduction

Transcriptomic biomarker discovery has been a challenge due to variation in datasets
and platforms, complexity in statistical and computational methods, integration of multiple
programming languages, and intricacy of ML workflow to evaluate biomarkers. Standard
workflows necessitate several stages (quality control, normalization, differential expression),
typically executed in R or Python, resulting in bottlenecks for non-experts. Existing
platforms have alleviated certain challenges by offering graphical interfaces for data
loading, normalization, differential gene expression analysis, and functional analysis;
nevertheless, they typically do not incorporate integrated machine learning procedures for
biomarker selection.

Method

In this regard, we present omicML, an intuitive graphical user interface (GUI) that combines
transcriptomic data analysis with machine learning (ML)-based classification via integrating R
and Python packages/libraries. It supports both RNA-Seq and microarray data,
automating preprocessing (data import, quality control, and normalization) and differential
expression analysis. The tool annotates differentially expressed genes (DEGs) with
descriptions, gene ontology, and pathway information and incorporates comparative analysis.
Our extensive ML pipeline enables both supervised and unsupervised learning, integrates
various datasets based on candidate gene signatures, standardizes and eliminates less
significant features, benchmarks multiple ML classifiers with robust performance metrics (e.g.,
AUROC, AUPRC), assesses feature importance, develops single-gene and multi-gene predictive
models, and systematically finalizes the biomarker algorithm. All functionalities are available in
omicML, hence reducing the barrier for biologists without computational proficiency.

Result

In a case study, omicML identified a six-gene diagnostic model that distinguishes Mpox
(monkeypox virus) infections from those caused by other viruses, including SARS-CoV-2, HIV,
Ebola, and varicella-zoster. These results illustrate omicML's capacity to discern clinically
relevant biomarkers from complex transcriptome data.

Conclusion

Through  the unified system, omicML (https://omicml.org), integrating data
preprocessing, differential gene expression analysis, annotation, heatmap analysis, dataset
integration, batch effect correction, machine learning approach, and functional analysis can
diminish technical barriers and accelerates the conversion of expression data into diagnostic
insights for clinicians and bench scientists.

Keywords: Machine Learning (ML), Biomarker, Mpox, Differentially Expressed Genes
(DEGs), Graphical User Interface (GUI), Transcriptomics, Bioinformatics, Web-based platform.
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Figure 1 Overview of omicML and its modules.

Introduction

Microarrays and RNA sequencing have been extensively utilized to investigate gene behavior in
diseases, environmental stresses, or infections. These techniques generate mountains of data and
translating high-dimensional expression data into robust biomarkers poses significant challenges,
particularly for researchers without computational expertise. A biomarker discovery workflow
demands proficiency in diverse tools for preprocessing, differential expression analysis, functional
annotation, and advanced machine learning (ML), each requires specialized programming skills in
R, Python, or Bash. Existing platforms streamline differential gene expression (DGE) analysis and
pathway enrichment, but they typically lack ML pipelines for predictive biomarker discovery. To
address these gaps, we present omicML, an interactive web application that integrates
bioinformatics and machine learning workflows for the development of transcriptome biomarkers
with clicks.

Over the years, numerous web-based platforms have been developed to optimize genomic and
transcriptomic investigations, providing intuitive interfaces that enable complex data interrogation
with minimal user burden. For example, iDEP (integrated Differential Expression and Pathway
analysis) automates extensive gene ID conversion, provides comprehensive gene annotation, and
integrates statistical and visualization techniques, including principal component analysis (PCA),
DGE analysis, and pathway enrichment [1]. Similar platforms, such as START App (Shiny
Transcriptome Analysis Resource Tool), Degust, and ShinyNGS, offer intuitive interfaces for
clustering, PCA, expression visualization, and DGE analysis [2—4]. Furthermore, an open-source
platform, Galaxy, provides a broad suite of web-based tools for genomic and differential analysis
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80  [5]. These platforms facilitate preliminary data exploration and DGE identification but do not
81  inherently identify biomarkers using advanced ML. Additional specialized instruments also tackle
82  many facets of gene expression analysis. IRIS-EDA facilitates DGE analysis through discovery-
83  driven methodologies, including correlation analysis, heatmap creation, clustering, and PCA [6].
84 In contrast, Phantasus provides cross-platform datasets integration facilities from the Gene
85  Expression Omnibus (GEO), allowing for data normalization and filtering before differential
86  analysis [7]. The GEO2R tool in the NCBI, GEO portal, enables pairwise comparisons of
87  expression data; however, it depends on the pre-normalized data provided by submitters and does
88  not execute batch correction or standardize microarray and RNA-Seq processing. GEO2R
89  excludes any gene that displays at least one NA value in any of the samples in the comparison [8].

90  Despite the advancements in transcriptome analysis provided by the aforementioned technologies,
91 none are specifically engineered for predictive biomarker modeling utilizing comprehensive ML
92  methodologies. To address this significant deficiency, we offer a universal algorithmic pipeline
93  capable of predicting biomarkers linked to various diseases, environmental pressures, and other
94  situations across several species, based on the differentially expressed genes revealed in
95  preliminary research. omicML extends existing capabilities with the following features:(1)
96  automated preprocessing of input data (imputation of missing values, batch effect correction), (2)
97  compatibility with both RNA-Seq and microarray datasets, enabling cross-platform analysis, (3)
98 annotation support for 367 species, providing broad taxonomic coverage, (4) integrated ML
99 pipelines for data standardization, feature selection, benchmarking, nested coss-validation,
100  hyperparameter tuning, feature importance, single-gene model building, multi-gene model
101  (biomarker algorithm) building, model finalization, and (5) embedded network analysis and
102  functional enrichment to contextualize candidate biomarkers within biological pathways. By
103 integrating these processes, omicML distinctly connects transcriptomic analysis with predictive
104  biomarker modeling, enabling users to convert DEG lists into actionable diagnostic or therapeutic
105  targets without requiring coding expertise. omicML has been designed using six general modules
106  (Figure 01).

107  This paper also illustrates the effectiveness of omicML through a case study on monkeypox virus
108  (MPXYV) infections. In the light of the identification of a novel clade of 2022 Mpox and their
109  biomarkers in our previous study [9], we have now used heterogeneous transcriptomic datasets to
110  identify the conserved biomarkers across different clades and cell models. omicML identified 34
111 shared DEGs through comparative analysis and employed a machine learning pipeline to prioritize
112 six high-confidence biomarkers. Among these, RRAD emerged as the most robust single-gene
113 predictor of MPXYV infection. This example highlights omicML’s capacity to democratize ML-
114  driven biomarker discovery, providing a reproducible, scalable, cross-platform workflow for users
115  navigating complex transcriptomic data.

116 Materials and Methods

117 Key steps are summarized in Figure 2 which outlines the omicML workflow within a
118  comprehensive bioinformatics pipeline for transcriptomic data analysis, focusing on biomarker
119  discovery and functional interpretation.
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120 Figure 2 Detailed workflow of omicML
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121  Data Acquisition and Input

122 The analytical pipeline within the omicML framework commences with the acquisition of primary
123 input datasets of raw sequencing derived from either microarray or RNA-Seq experiments. Initial
124  data can either be generated de novo via web-based analytical suites (e.g., Galaxy [5]) or retrieved
125  from curated repositories such as Gene Expression Omnibus (GEO) [10], ArrayExpress [11], The
126  Cancer Genome Atlas (TCGA) [12], the Sequence Read Archive [13].The structured input
127  system—an expression matrix and a metadata is designed to minimize errors during processing
128  and provide a robust foundation for ML-driven biomarkers discovery.

129  Preprocessing, Dimensionality Reduction, and Outlier Detection

130  To ensure data integrity, initial preprocessing is employed by the filtration through WGCNA [14]
131  and the imputation technique to mitigate low-variance genes and missing values respectively.
132 Subsequently, dimension reduction techniques are used to visualize the high dimensional and
133 complex gene expression data into lower dimension spaces. Additionally, hierarchical clustering
134  (dendrogram-based view) is conducted to explore the grouping of samples facilitating the detection
135  of potential outliers (user exclusion if necessary).

136  Normalization and Batch Correction

137  Normalization corrects the systematic biases and "uninteresting" factors, ensuring that observed
138  differences between experimental conditions accurately reflect true biological variation. For
139  microarray data, quantile normalization is applied for harmonizing intensity distributions across
140  arrays. RNA-Seq data is normalized in median-of-ratios approach.

141  Differential Gene Expression (DGE) Analysis

142  In DGE analysis, differentially expressed genes (DEGs) are pointed out through pairwise
143 comparison between samples with two different types of conditions. DGE analysis is employed
144  through platform-specific statistical frameworks. DEGs are defined by |[LFC| > 1 and padj < 0.05,
145  visualized via volcano plots annotated with gene IDs.

146 Gene ID Conversion and Annotation

147  Gene (DEGs) IDs (Ensembl and Entrez) resulted in DGE analysis are converted to gene symbol
148  and annotated with description using the R package the biomaRt [15]—incorporates gene
149  annotation data for 367 organisms (214 from Ensembl and 153 from Ensembl Plants). Gene 1D
150  conversion ensures the visualization of volcano plots with respective gene symbols (if
151  available) instead of gene IDs (Ensembl or Entrez).

152  Comparative Transcriptomics and Integrative Analysis

153  Comparative analysis of the outcomes in DGE analysis enhances our understanding of shared and
154  unique gene expression patterns, revealing condition-specific molecular signatures. The result is
155  visualized in a venn diagram using the ggVennDiagram [16] package, which can efficiently handle
156  up to 7 gene sets. For analyses involving more than 7 gene lists, the results are visualized using an
157  upset plot, offering a clear and scalable representation of complex gene set intersections. Users
158  can analyze one or multiple datasets and compare the DEGs to identify intersecting genes shared
159  across different contrasts as well as unique gene sets specific to individual contrasts. Log-fold
160  metrics of both microarray and RNA-seq are integrated to generate the data for heatmap analysis.

161  Machine Learning Analysis
162 A suite of advanced ML frameworks was leveraged to systematically evaluate the classification
163 efficacy of the DEGs as candidate biomarkers derived from transcriptomic profiles. The predictive
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164  performance of the DEGs was quantified through iterative feature optimization and cross-
165  wvalidation, identifying genes with robust discriminatory power. This integrative pipeline bridges
166  transcriptomic discovery and computational validation, thereby ensuring the robustness of putative
167  biomarkers in complex biological matrices.

168  Data Preprocessing, Merging, and Batch-Effect Correction

169  Raw multi-platform datasets are subjected to a systematic preprocessing workflow encompassing
170  variance stabilization, and global normalization to attenuate platform-derived technical variability
171  and facilitate cross-study comparability. Heterogeneous datasets (e.g., RNA-Seq and microarray)
172 were integrated into a unified expression matrix, annotated with metadata columns for conditions
173  and batch identifiers. Platform-induced technical artifacts are corrected via the ComBat [17],
174  followed by Z-score to standardize feature distributions prior to downstream analyses.

175  Dimensionality Reduction and Unsupervised Analysis

176  Unsupervised learning techniques, including Principal Component Analysis (PCA), t-distributed
177  Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection
178  (UMAP), are applied to the normalized dataset to reduce dimensionality and reveal intrinsic data
179  structures. Sample-to-sample relationships are further assessed by computing a Pearson correlation
180  matrix, visualized as a correlation heatmap.

181  Feature Selection

182  Feature selection is performed using the Recursive Feature Elimination (RFE) algorithm [18] with
183  a Random Forest classifier as the base estimator. In this analysis, the top 50% of are retained by
184  default. Finally, the dataset is reduced to retain only the selected features for subsequent modeling
185  and analysis.

186 Model Selection, Nested Cross-Validation, Hyperparameter Tuning and Model
187  Benchmarking

188  Six ML classifiers, linear and tree-based methods, including Logistic Regression (LR), Extra Trees
189  (ET), Random Forest (RF), XGBoost (XGB), Gradient Boosting (GB), and AdaBoost (AB), are
190  selected for benchmarking experiment using Python libraries scikit-learn [19] and XGBoost [20].
191  To evaluate model performance and extract optimal hyperparameters, two-tiered nested cross-
192  wvalidation (CV) [21] is implemented. The 5-fold outer CV is used for model evaluation to maintain
193  original class balance. In each of the five iterations, 4-folds (80% of the data) are utilized for
194  training and hyperparameter selection; the remaining 1-fold (20%) is employed for testing. This
195  process is repeated in all the 5-folds. To further optimize the model's performance, hyperparameter
196  tuning is conducted. Within each outer training set, an inner 3-fold Stratified CV (2-fold for
197  training and 1-fold for testing) is performed for hyperparameter tuning, evaluating all
198  combinations of hyperparameter using GridSearchCV [20]. A baseline evaluation is also
199  performed using each classifier’s default hyperparameters under the same outer CV framework.
200  For every held-out test fold, several metrics—including Accuracy (ACC), balanced accuracy
201  (BACC), precision (PREC), recall (REC), F1 score (F1), AUROC, area under the precision-recall
202 curve (AUPRC), Matthews correlation coefficient (MCC), Cohen’s kappa (KAPPA), and log loss
203  (LOGLOSS)—are computed for both the default and tuned pipelines.

204  Performance evaluation

205  The classification performance of each model is assessed through the calculation of the AUROC
206  and AUPRC. By default, the model with the highest AUPRC and AUROC scores is selected for
207  further analysis. But users can select any of the models which aligns well with their study.
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208  Feature Importance

209  For the selected model, feature importance is evaluated by calculating the mean decrease in
210  accuracy, which measures the decrement of a model’s accuracy for the removal of individual
211  feature. Based on this metric, the top 10 features are ranked, reflecting the features that contributed
212 the most to the model's accuracy in classifying samples.

213 Single-Gene Model Building to Determine the Best Biomarker

214  For each of the top 10 features, a separate single-gene model is trained, and cross-validated using
215 nested CV. The evaluation metrics (e.g., AUROC, AUPRC, ACC) are calculated accordingly.
216  AUROC value indicates the ability of a feature (biomarker) to distinguish between, while the
217  AUPRC value detects the ability of a feature to detect true positive case of the target condition.
218  The single-gene model with the highest AUPRC and AUROC is considered as the best biomarker
219  for the contrast.

220  Feature Ablation Study to Finalize Multi-Gene Model (Biomarker Algorithm)

221  To finalize the multi gene-model, the top ten features are incrementally reduced by removing the
222 least important feature one at a time. The multi-gene model yielding the best AUPRC along with
223 other matrices is selected as the prediction model. Nested CV, hyperparameter tuning, and model
224 evaluation (e.g., AUROC, AUPRC, ACC) are performed to finalize the multi-gene model
225  (biomarker algorithm).

226  Network and Functional Enrichment Framework

227 A set of genes’ symbols are uploaded and selected their corresponding organism to identify the
228  PPInetwork and other enrichments. Initially, PPI networks are constructed using STRING-db [22]
229  for the input gene symbols. Consequently, the common genes between the neighbor genes and
230  query genes (need to be uploaded by user) are selected and their interaction network is visualized.
231  The common genes are then analyzed to obtain their enrichments including Component, Process,
232 Function, WikiPathways, KEGG, Reactome, HPO, Diseases, Pfam, SMART, InterPro, TISSUES,
233 Compartments, NetworkNeighbors, PMID, Keyword with FDR<0.05. The top enriched terms are
234  visualized using ggplot2. Moreover, users can identify neighbor genes and upload multiple genes
235  directly to obtain their interaction networks and enrichments.

236  Backend and Frontend Development

237  The analytical pipelines are developed as APIs using FastAPI [23] to handle HTTP requests and
238 enable communication with Python. R-based computations are executed using the rpy2
239 (https://rpy2.github.io/) interface. This architecture enables seamless interoperability between
240  Python and R. The entire workflow is containerized using docker [24] to configure and manage
241  the server. The frontend is developed using Nextjs (https://nextjs.org/) and TypeScript
242 (https://www.typescriptlang.org/) to create an interactive Graphical User Interface (GUI). Next.js
243 is chosen for its server-side rendering (SSR) capabilities, improved SEO, and efficient static site
244 generation (SSG). TypeScript is incorporated to enhance code maintainability and reliability. To
245  Deploy the full server, EC2 (https://aws.amazon.com/ec2/) service of AWS is utilized.
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248  Figure 3 The snapshot represents the interface of the omicML web tool

249  We developed omicML, an intuitive web application integrating R and Python libraries to
250  streamline transcriptomic analysis and biomarker prediction through a six-phase workflow: (i)
251  differential gene expression analysis, (i1) gene annotation, (iii) comparative analysis, (iv) heatmap
252  analysis, (v) learning analysis and validation, and (vi) functional analysis. The platform automates
253  preprocessing and employs dimensionality reduction alongside incorporates exploratory tools
254 (histograms, volcano plots) to identify DEGs. Machine learning workflows rigorously prioritize
255 and validate biomarkers via data standardization, feature selection, benchmarking, nested cross-
256  validation, hyperparameter tuning, feature importance, single-gene model building, multi-gene
257 model (biomarker algorithm) building, model finalization, culminating in predictive models
258  selected by evaluation metrics (e.g., AUROC, AUPRC, accuracy). By uniting statistical, ML, and
259  functional analyses within an intuitive graphical user interface, omicML enables researchers
260  without rigorous programming expertise to rapidly translate expression data into validated
261  biomarkers and novel biological hypotheses with some clicks only.

262 Case Study

263 markerMPXYV: Upregulation of RRAD and Building of a Biomarker Algorithm
264  for Mpox Virus Infection

265  To demonstrate the potential of omicML, we applied it to analyze real biological data, selected
266  from Gene Expression Omnibus (GEO), NCBI, of human cell models infected with the
267  monkeypox virus (MPXV) strains. The dataset, GSE11234 [25], comprises gene expression data
268  generated via expression profiling by array experiment of MPXV (Zaire strain)-infected dermal
269  fibroblasts and monocytes. The other dataset, GSE219036 [26], employs high-throughput
270  sequencing of transcriptomes of human keratinocytes infected with three distinct MPXYV strains:
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Clade I (historically endemic), Clade Ila (prior endemic), and Clade IIb (exclusively classified
during the 2022 global outbreak). Clade IIb shows distinguished expression pattern than the other
clades, we identified in our previous article [9].

Pre-processing, and Normalization of Datasets

In the microarray dataset, data of fibroblast (16 samples) and monocyte (36 samples) cell lines
were normalized to mitigate technical variability and ensure cross-sample comparability, with
boxplots (Figure 4A-D) visualizing the reduction in technical biases and improved post-
normalization distribution consistency. For the RNA-Seq dataset, expression distributions before
and after normalization of keratinocyte cell-line samples were visualized in boxplots (Figure 4E-
F)
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Figure 4 Expression pattern of datasets before and after normalization. The distribution of
expression data in the fibroblast (A-B), monocyte (C-D), and keratinocyte (E-F) cell lines are
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283  shown. Each of the boxes represents 50 percent (median) of the data. The lower boundary (Q1)
284  marks the 25th percentile, and the upper boundary (Q3) denotes the 75th percentile, with the
285  central line indicating the median. 50% of data points lie above the median, and 50% fall below
286 it, offering a clear statistical summary of gene expression variability within each cell type and
287  normalization state.

288  UMAP (Figure 5A, C, E) and hierarchical clustering (Figure 5B, D, F) analyses revealed distinct
289  expression patterns between MPXV-infected and mock cell types. Hierarchical clustering
290  identified four and two MPXV-infected samples in fibroblast (Figure SB) and monocytes (Figure
291  5D) respectively as outliers, underscoring technical or biological variability. Likewise,
292 keratinocyte cell-lines (Figure SE-F) exhibited high homogeneity, tight clustering with no
293  misclassification between groups.
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294 Figure 5 Sample distribution patterns and outlier identification through dimensionality reduction
295  (UMAP, t-SNE) and phylogenetic analysis. (A, C, and E) Clusters among samples identified from
296  UMAPs. X-axis represents the first component (C1), which captures the highest variation in gene
297  expression while Y-axis represents the second component (C2) which delineates the second most
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298  variation in gene expression across the datasets. Each circle indicates a sample while varying
299  colors indicating different treatments on the samples. (B, D, F) Phylogenetic trees visualized
300  between the classes of samples to pinpoint the outlier samples.

301 Differential Gene Expression Analysis, Annotation, and Identification of DEGs

302  DGE analysis compared cell-line specific MPXV-infected samples to mock controls. In microarray
303  data, 5,520 significant (padj < 0.05) annotated genes were evident in fibroblasts (4MPXV vs
304  8Mock), while 3,548 in monocytes (14 MPXV vs. 20 mock). Consequently, 922 up- and 1,849
305 down-regulated genes in fibroblasts (Figure 6A), and 590 up- and 277 down-regulated genes in
306  monocytes (Figure 6B) were identified. Analyzing RNA-Seq data, substantial significant genes
307 and DEGs were found in keratinocytes. After annotating significant Ensembl IDs, the following
308  keratinocytes data were shown: (i) Clade I vs. mock: 2,631 upregulated and 2,212 downregulated
309  (Figure 6C), (ii) Clade Ila vs. mock: 3,108 upregulated, 2,735 downregulated (Figure 6D), and
310  (iii) Clade IIb vs. mock: 2,167 upregulated, 2,156 downregulated (Figure 6E).
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312 Figure 6 Upregulated and downregulated genes. X-axis denotes the log2 fold change (LFC) in
313 gene expression. Positive values indicate upregulation whereas negative values indicate
314 downregulation. Y-axis shows the negative log-transformed adjusted P-value. The red circles and
315  the blue circles point out upregulated genes and downregulated genes, respectively. The horizontal
316  line represents the threshold value of FDR smaller than 0.05, ascertaining the significance of the
317  genes. However, the vertical lines represent the range of LFC less than -1 and greater than +1,
318  nominating the significant genes as differentially expressed genes.

319  Shared DEGs and Conserved Expression Patterns Across Cell Types and Clades
320  Comparative analysis of DEGs revealed a conserved transcriptional response across MPXV clades
321 (I, IIa, IIb) and cell types (fibroblasts, monocytes, and keratinocytes). Venn diagrams (Figure 7A-
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322 B) identified 27 up- and 7 downregulated genes common to all clades’ infection. Heatmap
323  visualization (Figure 7C) of these 34 shared DEGs further delineated clade- and cell type-specific
324  expression variability. This conserved signature underscores key genes are pivotal to MPXV
325  pathogenesis, irrespective of viral lineage or host cell type.
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327  Figure 7 Comparative analysis and Heatmap. Venn diagrams depict the commonness and
328 intersection in upregulated (A) and downregulated (B) genes. The heatmap (C) displays the
329  expression patterns of the 34 shared DEGs based on log fold-change (LFC) values across different
330  clades.
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Integration of Machine Learning Framework

To enhance the reliability of biomarker discovery, automated machine learning (ML) algorithms
were employed to evaluate the discriminatory power of identified DEGs in distinguishing MPXV-
infected samples from controls. From comparative transcriptomic analyses, 34 DEGs conserved
across all MPXV clades (I, Ila, IIb) were selected as initial features.

Primary data was constructed by merging normalized RNA-Seq (24 samples) and microarray
datasets (124 samples), yielding 148 samples. Dimensionality reduction (PCA, t-SNE, UMAP),
post batch effect correction and Z-score standardization, visualized the distribution of 148 samples
based on the 34-feature expression profile (Figure 8 A-C), while correlation analysis (Figure 9)

assessed interdependencies among features. Feature selection refined the 34 DEGs to 17 non-
redundant biomarkers using recursive feature elimination with random forests (RF-RFE). Using
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342  these 17 features, a reduced dataset was structured with the target classification (dependent
343  wvariable).

344  Figure 8 Assessment of the classification capabilities of features to cluster among the samples
345  according to dimension reduction. The sample distributions are depicted using PCA (A), t-SNE
346  (B), and UMAP (C) based on the 34 intersecting genes across infection of all clades of the Mpox
347  virus. Similarly, distributions of samples are illustrated utilizing PCA (D), t-SNE (E), and UMAP
348  (F) according to the top 10 genes ranked by importance score. Finally, discriminative power of
349  the six genes, selected for the final model, is highlighted through PCA (G), t-SNE (H), and
350  UMAP(I), plotted based on their expression levels. In the plots, each circle represents a sample
351  while "1" represents Mpox samples, and "0" represents samples infected by other pathogens.

352  Model Development and Benchmarking

353 By combining the most important features associated with MPXV infection into a Composite
354  metric (disease indicator), a machine learning model, markerMPXYV, was built. Twelve
355  classification algorithms were rigorously tested iteratively. Using nested cross-validation and
356  hyperparameter tuning, the Extra Trees (ET) classifier emerged as the top performer, achieving an
357  accuracy of 0.95, AUROC of 0.97, AUPRC of 0.94, and F1 score of 0.90 (Figure 10A-B).
358  Benchmarking results (mean + std across outer folds) for all models are determined.
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361  Figure 9 Relationships among the features shared to infection of all MPXV clades. The correlation
362  plot depicts the interactions among the 34 features common to all clade infections. A correlation
363 value of +1 indicates the highest positive correlation, while -1 represents the strongest negative
364  correlation between two features. Positive correlations are represented by red, whereas blue
365  signifies negative correlations.
366 Feature Importance analysis and Single-Gene Models Facilitated Biomarker Prioritization
367 by Ranking
368  The ET model ranked top 10 features by importance (Figure 10C). Single-gene Models ranked
369  RRAD as the top among 10 biomarkers selected by feature importance. RRAD achieved robust
370  performance (AUROC: 0.90; AUPRC: 0.85; F1: 0.76; accuracy: 0.91), demonstrating strong
371  discriminative power between Mpox-infected and control samples (Figure 11A-B).
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373 Figure 10 The benchmarking experiment identifies the best-fitting classifier for the dataset. (A)
374  The AUPRC plot, also known as the precision-recall plot, illustrates the performance of six
375  classifiers based on nested cross-validation. (B) The AUROC plot represents the accuracy of the
376  classifiers to build models. (C) Highlights the ranking of the top 10 features based on their
377  importance scores.
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378  Feature Ablation and Optimal Multi-Gene Panel

379 A feature ablation study revealed that combining six genes (ZNF212, ZNF451, PLAGLI, NFATS,
380 ICAMS, RRAD) surpassed single-gene models, achieving superior performance (AUROC: 0.95;
381  AUPRC: 0.92; F1: 0.84; accuracy: 0.94) (Figure 11 C-D). This six-gene panel was selected for
382  final model refinement.

A B

ROC Curves (Single-Gene)

o
| i
- e

Precision—Recall Curves (Single-Gene)

o
©
\
\
\,

o
o
\

\

N\

\
\
N\
\
N\,
N\
\
N\,
\
\
N\,
\,

[J]
=
@
. o
30.6 1 2
2] = el
8 /L/\/‘/ 8 ,// — RRAD (AUROC = 0.90)
a — RRAD (AUPRC = 0.85) - [a s ~—— ZNF212 (AUROC = 0.90)
0.4+ ZNF212 (AUPRC = 0.81) = o 04 e —— NUP58 (AUROC = 0.87)
—— NUP58 (AUPRC = 0.74) > W — PLAGL1 (AUROC = 0.84)
— e i £ — s noc- 079
- =0. T e — FOSL1 (AUROC = 0.85)
0.2{ = ises (aUPRG - 0.6 ~ ZNF266 (AUROC = 0.8
| — 2NF451 (AUPRC = 0.61) ’ el —— ZNF451 (AUROC = 083)
ICAM5 (AUPRC = 0.60) e ICAMS5 (AUROC = 0.79)
— PIK3CD (AUPRC = 0.46) L —— PIK3CD (AUROC = 0.78)
-~ Baseline=0.22 47 -~ Random Chance
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 .. 06 0.8 1.0
Recall False Positive Rate
Precision-Recall Curves with Varying Number of Features ROC Curves with Varying Number of Features
1.0 1.04 T — =
- T - -
i e . e : ,//
0.8 o 08 jﬂd_/jr e
+— e
© L
c = x -
S0.6 = Qo6
R = = -~
[3) — 6-Gene Model (AUPRC = 0.92) 7} el - el -
SO ms'sidvient Ari o =R i Gene Modsl (UROG - 055
0.0.4 — 7-Gene Model (AUPRC = 0.91) 0.4 g — 6-Gene Model (AUROC = 0.95)
— 8-Gene Model (AUPRC = 0.90) o ad — 7-Gene Model (AUROC = 0.94)
— 9-Gene Model (AUPRC = 0.89) = 7 —— 8-Gene Model (AUROC = 0.94)
— 10-Gene Model (AUPRC = 0.89) N - el — 3-Gene Model (AUROC = 0.93)
0.2 4-Gene Model (AUPRC = 0.89) 0.21 g 9-Gene Model (AUROC = 0.93)
+&’| = 3-Gene Model (AUPRC = 0.87) N /" —— 10-Gene Model (AUROC = 0.92)
2-Gene Model (AUPRC = 0.85) L 2-Gene Model (AUROC = 0.92)
— 1-Gene Model (AUPRC = 0.81) g ~— 1-Gene Model (AUROC = 0.90)
0 -- Baseline=0.22 0 /" -=- Random Chance
o 02 04 056 038 1.0 4o 02 04 06 038 1.0
Recall False Positive Rate

383

384  Figure 11 Evaluation of single- and multi-gene models. (A, B) The AUPRC and AUROC plots
385  depict the performance and class-distinguishing ability of individual features. (C, D) illustrate the
386  optimal combination of features for model building, determined by the ranking of performance
387  (PR) and AUC scores. The evaluation ranking is based on AUPRC and AUROC values.

388

389  Final Model Performance and Validation

390  Consequently, the predictive model was built and finalized using the expression of the six genes
391  (ZNF212, ZNF451, PLAGLI, NFATS, ICAMS, RRAD), achieving an accuracy of 0.94 on train data
392  (AUPRC: 0.91, AUROC: 0.93, F1: 0.84) and 0.93 on test data (AUPRC 0.91, AUROC 0.96, F1
393 0.83) (Figure 12A-B). The confusion matrices of train and test data for the finalized models are
394  shown in Figure 12C-D. These results underscore the model’s reliability in diagnosing Mpox
395  infection and its potential for clinical translation.
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397  Figure 12 Performances of the Final Model X. (A, B) Model evaluation scores of AUPRC and
398  AUROC, representing the performance of both training and testing of the final model. (C)
399  Prediction outcomes on the test (C) and train (D) data are presented using the confusion matrix.

400  Network, Functional, and Enrichment Analysis

401  To elucidate the functional roles of the six predicted biomarkers in MPXV infection, omicML
402  mapped their interaction networks using the STRING database. 3,880 neighbor genes interacting
403  with the six-gene panel (ZNF212, ZNF451, PLAGLI, NFATS, ICAM5, RRAD) were identified.
404  Each of the six genes were also analyzed individually and top 20 interacting neighbor genes’
405 network was plotted. Genes overlapping between the neighbor network and DEG lists were
406  identified with enrichment analysis revealing their involvement in key biological processes and
407  molecular functions.

408  Uniqueness of the Six-Gene Model as MPXYV Biomarkers

409  To validate the hallmark signatures of Mpox infection of identified six-gene model including
410  RRAD, transcriptomic datasets (GSE141932 [27], GSE157103 [28], GSE184320 [29], and
411  GSE11234 [25]) of other potential viruses including varicella, ebola, HIV, and SARS-Cov-2 have
412 been analyzed via omicML. Only ICAMS (varicella) and ZNF451 (Ebola) exhibited marginal
413  upregulation near significance thresholds, while other genes showed no differential expression.
414  Interestingly, none of the six genes met statistical significance (padj <0.05, |[LFC| > 1) in smallpox-
415  related varicella-zoster, SARS-CoV-2, HIV, or Ebola infections, confirming their specificity to
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416 ~ MPXV. This lack of cross-viral relevance underscores the panel’s uniqueness as a robust MPXV
417  signature.
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418  Figure 13 Expression level of selected biomarkers in other virus infection in human. The heatmap
419  highlighting the scaled expression levels of six selected genes (ICAMS5, ZNF451, NFATS5, RRAD,
420  ZNF212, and PLAGLI) across four viral infection conditions: Varicella, Ebola, SARS, and HIV.
421  The intensity of the colors reflects LFC values, where red indicates upregulation, blue indicates
422 downregulation, and gray indicates no significance. Cladogram was applied to both genes and
423 infection conditions to comprehend relationships pattern

424 Discussions

425  The advent of high-throughput omics data and biomarker discovery techniques has resulted in a
426  fragmented and specialized ecology of isolated platforms, rendering end-to-end analysis laborious.
427  In practice, researchers frequently need to integrate disparate software for each task (e.g., DGE
428  analysis in R/Python, annotation in external databases, GO pathway analysis in another tool) via
429  manual file transfers and custom scripting, resulting in inefficiencies, errors, and reproducibility
430  1issues for non-programmers [30]. Most conventional pipelines (e.g., DESeq2, edgeR, limma) and
431  annotation services (biomaRt, DAVID) are available solely as code libraries or standalone web
432  applications, whereas point-and-click platforms (DEBrowser, GenePattern, GEO2R) generally
433 cater to only a limited range of tasks, neglecting advanced procedures such as cross-study meta-
434  analyses, batch correction, dataset integration, or machine learning (ML) investigations.
435  Consequently, even standard procedures like quality control, normalization, and batch correction
436  necessitate bioinformatics assistance, thereby constraining scalability and impeding workflow
437  efficiency.

438  Moreover, workflows that use machine learning are typically absent. Traditional biomarker
439  investigations often culminate with the compilation of a list of differentially expressed candidates,
440  often evaluating them individually. Few tools offer built-in ML pipelines (feature selection, model
441  training, benchmarking) to rigorously evaluate candidate biomarkers. However, Leclercq et al.
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442  indicated that current auto-ML systems are either inadequately designed for biological datasets or
443  excessively complex for individuals lacking expertise in machine learning to utilize effectively
444 [31]. In addition, the majority of machine learning technologies are inaccessible to biologists due
445  to their support for a restricted array of algorithms, the necessity for manual hyperparameter
446  optimization, or the assumption of programming proficiency [31]. Finally, inflexible, hard-coded
447  pipelines lack the modularity and graphical interfaces necessary for seamless adaptation across
448  various omics modalities or research strategies. The discipline presently needs a unified, adaptable
449  platform that seamlessly integrates (1) DGE analysis, (2) annotation, (3) cross-study comparison,
450  (4) ML-based validation, and (5) functional enrichment in an automated, user-friendly manner.
451  Bench scientists encounter obstacles at every stage of biomarker discovery [30,32]. We introduce
452  omicML, specifically engineered to address these deficiencies by offering a comprehensive,
453  graphical platform for transcriptome biomarker identification.

454  All fundamental preprocessing and differential expression procedures are consolidated into a
455  single platform, eliminating the necessity for users to transfer data across programs. Investigators
456  can define experimental groups with minimal clicks and promptly obtain differentially expressed
457  genes (DEGs) along with corresponding graphs. Integrated annotation (ID conversion, pathway
458  mapping) and comparative modules (e.g., Venn overlaps across conditions) obviate the need for
459  manual scripting or file transfers. The new approach eliminates the "silos" of disparate
460  technologies, allowing for seamless transitions of outputs from data extraction to annotation to
461  comparative modules. This immediately tackles the fragmentation problem identified in the
462 literature.

463  omicML incorporates an extensive, machine learning-driven validation suite to overcome the
464  shortcomings of traditional biomarker procedures. The platform transcends conventional methods
465  that only identify statistical connections by automating feature selection, model benchmarking
466  using nested cross-validation, and conducting ablation studies to thoroughly evaluate biomarker
467  stability and significance. omicML employs tools such as BioDiscML for comprehensive searches
468  and cross-validated classifiers, ensuring that biomarker candidates are evaluated using advanced
469  methodologies without necessitating user coding [31].

470 provided as a graphical, no-code interface designed for anyone without a background in
471  bioinformatics. Like BIOMEX, which illustrated the use of an interactive multi-omics platform
472  for laboratory researchers, the new program offers menus and wizards in lieu of command lines.
473  Non-experts may upload their data, configure parameters, and examine outcomes presented as
474  publication-quality graphs and tables. The technology automates laborious activities such as batch
475  correction and file merging, guaranteeing reproducibility without manual involvement. Bench
476  scientists can go from raw data to validated biomarker panels solely within the GUI, eliminating
477  the necessity for Python or R coding. This modular approach guarantees flexibility and
478  reproducibility, allowing pipelines to be re-executed or modified for new datasets.

479  In our case study, we conducted a comparative transcriptomic analysis to identify DEGs and
480  predictive biomarkers across multiple MPXV clades’ infection because of limited therapeutic
481  options and the growing threat of a broader pandemic of monkey pox viruses. Using keratinocytes,
482  dermal fibroblast, and monocyte cell-types infected with various MPXYV clades, we found a higher
483  number of DEGs in skin-derived cells compared to monocytes, a finding consistent with prior
484  observations of increased viral load in keratinocytes Figure 5 (A-E). Notably, recent clades
485  appeared to elicit broader gene dysregulation compared to the older Zaire strain, with 34 DEGs
486 (27 upregulated, 7 downregulated) consistently expressed across all three cell types irrespective of
487  clade, suggesting their potential relevance in distinguishing MPXV pathogenesis Figure 6 (A &
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488  B). To evaluate the diagnostic efficacy of these DEGs, we implemented machine learning models
489  that classified MPXV-infected versus control samples using integrated RNA-Seq and microarray
490  data. After batch effect correction, feature selection and benchmarking experiment, the Extra Trees
491  Classifier uncovered RRAD as the most potent single-gene biomarker (AUROC: 0.90; AUPRC:
492  0.85; F1: 0.76; accuracy: 0.91). Furthermore, a six-gene panel (ZNF212, ZNF451, PLAGLI,
493  NFATS, ICAMS, RRAD) exhibited superior classification performance (AUROC: 0.95; AUPRC:
494  0.92; F1:0.84; accuracy: 0.94), underscoring its utility for robust biomarker-based mpox detection.
495  The identified biomarkers are pivotal in orchestrating host responses to MPXV infection,
496 interacting with both upregulated and downregulated genes. Among the six key genes, five regulate
497  critical cellular processes: ZNF212, ZNF451, NFATS5, and PLAGLI govern gene expression and
498  biological pathways, while RRAD modulates molecular functions. The sixth gene, ICAMS, is
499  central to cellular adhesion. Collectively, these genes form an interconnected network influencing
500  signal transduction and immune responses, highlighting their systemic role in host-pathogen
501 interactions.

502  RRAD and ICAMS are central to immune evasion [33,34]. RRAD suppresses NF-kB signaling by
503  binding to its p50/p65 heterodimer, blocking inflammatory protein synthesis and cytokine
504  production [34,35]. This inhibition dampens immune activation, potentially aiding MPXV
505  survival. Notably, RRAD overexpression is linked to oncogenesis in skin cells and glucose
506  metabolism dysregulation, contributing to type II diabetes [36,37]. Similarly, /CAMS5, a neuronal
507  immune modulator, is upregulated in MPXV-infected cells, impairing phagocytosis and T-cell
508  responses [33,38]. Its overexpression may suppress innate and adaptive immunity, enhancing viral
509  persistence and disease severity.

510  Incontrast, NFATS and ZNF451 activate immune defenses. NFATS promotes immune cell survival,
511  proliferation, and differentiation (e.g., macrophages, T-cells) while regulating NF-kB and Treg/Th
512 cell pathways. However, its overexpression risks rheumatoid arthritis and tumor progression, and
513  may stimulate viral replication [39,40]. ZNF45] enhances immunity by inhibiting TGF-j
514  signaling, which otherwise suppresses NK cells, T-cells, and antigen-presenting cells [39]. By
515  countering TGF-B, ZNF451 amplifies immune activation, though its role in MPXV-specific
516  responses warrants further study.

517  PLAGLI governs apoptosis, cell cycle control, and TP53-mediated transcription. As a tumor
518  suppressor, its overexpression regulates aberrant proliferation yet is paradoxically associated with
519  oncogenesis [41,42]. In MPXV infection, PLAGLI-induced apoptosis may restrict viral
520  dissemination, while its multiple functions in cancer underscore context-dependent effects on host-
521  pathogen interactions.

522  Limitations

523  While omicML currently provides a comprehensive GUI-driven pipeline for transcriptomics-based
524  biomarker discovery, more sophisticated functionalities are yet to be integrated in next versions
525  (omicML 2.0). omicML is presently tailored to bulk transcriptomic data and does not include
526  network-based or clinical modeling modules. In practice, many biomarker studies rely on gene co-
527  expression network analysis and survival modeling to uncover complex patterns and clinical
528  relevance, so these capabilities are absent in the current version.

529  Conclusions

530  omicML represents a novel end-to-end framework for biomarker discovery by integrating many
531 analytical steps into a cohesive, user-friendly platform. Its graphical interface guides users from
532  dataupload to normalization, differential expression, annotation, and machine-learning evaluation,
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533 therefore obviating the necessity for complex coding. This integrated pipeline unifies predictive
534  modelling and biomarker selection into a cohesive approach. omicML democratizes access to
535 complicated analyses by offering a GUI-based approach, allowing physicians and bench
536  researchers without required programming abilities to execute advanced transcriptomics
537  procedures. By reducing technical obstacles and offering a comprehensive, cohesive toolkit,
538 omicML is positioned to significantly influence translational bioinformatics and the advancement
539  of clinically pertinent molecular diagnostics.

540  Besides, omicML addressed the urgent need for mpox biomarkers and identified a six-gene model
541  (ZNF212, ZNF451, PLAGLI, NFATS5, ICAMS5, and RRAD) achieving exceptional diagnostic
542 accuracy (AUROC: 0.95; AUPRC: 0.92) out of 34 clade-independent DEGs. This demonstrates
543  omicML’s capacity to bridge transcriptomic insights with ML-driven validation, accelerating
544  biomarker discovery for emerging pathogens and beyond.

545 Abbreviations

546  GUI: Graphical User Interface

547  DGE: Differential gene expression

548  DEGs: Differentially expressed genes

549  LFC: Log2 fold change

550  FDR: False Discovery Rate

551  Padj: P-adjusted Value

552 PCA: Principal Component Analysis

553  UMAP: Uniform Manifold Approximation and Projection
554  t-SNE: t-distributed stochastic neighbor embedding
555  ML: Machine Learning

556  LR: Logistic Regression

557  ET: Extra Trees

558  RF: Random Forest

559  XGB: XGBoost

560  GB: Gradient Boosting

561  AB: AdaBoost

562  ACC: Accuracy

563  BACC: Balanced Accuracy

564  PREC: Precision

565 REC: Recall

566  F1:F1 Score

567  AUROC: Area Under the Receiver Operating Curve
568  AUPRC: Area Under the Precision-Recall Curve
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572 Mpox: Monkey Pox
573  MPXV: Monkey Pox Virus
574  GEO: Gene Expression Omnibus
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