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Abstract 

Introduction 
Transcriptomic biomarker discovery has been a challenge due to variation in datasets 

and platforms, complexity in statistical and computational methods, integration of multiple 

programming languages, and intricacy of ML workflow to evaluate biomarkers. Standard 

workflows necessitate several stages (quality control, normalization, differential expression), 

typically executed in R or Python, resulting in bottlenecks for non-experts. Existing 

platforms have alleviated certain challenges by offering graphical interfaces for data 

loading, normalization, differential gene expression analysis, and functional analysis; 

nevertheless, they typically do not incorporate integrated machine learning procedures for 

biomarker selection. 

Method 
In this regard, we present omicML, an intuitive graphical user interface (GUI) that combines 

transcriptomic data analysis with machine learning (ML)-based classification via integrating R 

and Python packages/libraries. It supports both RNA-Seq and microarray data, 

automating preprocessing (data import, quality control, and normalization) and differential 

expression analysis. The tool annotates differentially expressed genes (DEGs) with 

descriptions, gene ontology, and pathway information and incorporates comparative analysis.  

Our extensive ML pipeline enables both supervised and unsupervised learning, integrates 

various datasets based on candidate gene signatures, standardizes and eliminates less 

significant features, benchmarks multiple ML classifiers with robust performance metrics (e.g., 

AUROC, AUPRC), assesses feature importance, develops single-gene and multi-gene predictive 

models, and systematically finalizes the biomarker algorithm. All functionalities are available in 

omicML, hence reducing the barrier for biologists without computational proficiency.  

Result 
In a case study, omicML identified a six-gene diagnostic model that distinguishes Mpox 

(monkeypox virus) infections from those caused by other viruses, including SARS-CoV-2, HIV, 

Ebola, and varicella-zoster. These results illustrate omicML's capacity to discern clinically 

relevant biomarkers from complex transcriptome data.  

Conclusion 
Through the unified system, omicML (https://omicml.org), integrating data 

preprocessing, differential gene expression analysis, annotation, heatmap analysis, dataset 

integration, batch effect correction, machine learning approach, and functional analysis can 

diminish technical barriers and accelerates the conversion of expression data into diagnostic 

insights for clinicians and bench scientists. 

Keywords: Machine Learning (ML), Biomarker, Mpox, Differentially Expressed Genes 

(DEGs), Graphical User Interface (GUI), Transcriptomics, Bioinformatics, Web-based platform. 
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Figure 1 Overview of omicML and its modules. 58 

Introduction 59 

Microarrays and RNA sequencing have been extensively utilized to investigate gene behavior in 60 

diseases, environmental stresses, or infections. These techniques generate mountains of data and 61 

translating high-dimensional expression data into robust biomarkers poses significant challenges, 62 

particularly for researchers without computational expertise. A biomarker discovery workflow 63 

demands proficiency in diverse tools for preprocessing, differential expression analysis, functional 64 

annotation, and advanced machine learning (ML), each requires specialized programming skills in 65 

R, Python, or Bash. Existing platforms streamline differential gene expression (DGE) analysis and 66 

pathway enrichment, but they typically lack ML pipelines for predictive biomarker discovery. To 67 

address these gaps, we present omicML, an interactive web application that integrates 68 

bioinformatics and machine learning workflows for the development of transcriptome biomarkers 69 

with clicks. 70 

Over the years, numerous web-based platforms have been developed to optimize genomic and 71 

transcriptomic investigations, providing intuitive interfaces that enable complex data interrogation 72 

with minimal user burden. For example, iDEP (integrated Differential Expression and Pathway 73 

analysis) automates extensive gene ID conversion, provides comprehensive gene annotation, and 74 

integrates statistical and visualization techniques, including principal component analysis (PCA), 75 

DGE analysis, and pathway enrichment [1]. Similar platforms, such as START App (Shiny 76 

Transcriptome Analysis Resource Tool), Degust, and ShinyNGS, offer intuitive interfaces for 77 

clustering, PCA, expression visualization, and DGE analysis [2–4]. Furthermore, an open-source 78 

platform, Galaxy, provides a broad suite of web-based tools for genomic and differential analysis 79 
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[5]. These platforms facilitate preliminary data exploration and DGE identification but do not 80 

inherently identify biomarkers using advanced ML.  Additional specialized instruments also tackle 81 

many facets of gene expression analysis.  IRIS-EDA facilitates DGE analysis through discovery-82 

driven methodologies, including correlation analysis, heatmap creation, clustering, and PCA [6]. 83 

In contrast, Phantasus provides cross-platform datasets integration facilities from the Gene 84 

Expression Omnibus (GEO), allowing for data normalization and filtering before differential 85 

analysis [7]. The GEO2R tool in the NCBI, GEO portal, enables pairwise comparisons of 86 

expression data; however, it depends on the pre-normalized data provided by submitters and does 87 

not execute batch correction or standardize microarray and RNA-Seq processing. GEO2R 88 

excludes any gene that displays at least one NA value in any of the samples in the comparison [8]. 89 

Despite the advancements in transcriptome analysis provided by the aforementioned technologies, 90 

none are specifically engineered for predictive biomarker modeling utilizing comprehensive ML 91 

methodologies. To address this significant deficiency, we offer a universal algorithmic pipeline 92 

capable of predicting biomarkers linked to various diseases, environmental pressures, and other 93 

situations across several species, based on the differentially expressed genes revealed in 94 

preliminary research. omicML extends existing capabilities with the following features:(1) 95 

automated preprocessing of input data (imputation of missing values, batch effect correction), (2) 96 

compatibility with both RNA-Seq and microarray datasets, enabling cross-platform analysis, (3) 97 

annotation support for 367 species, providing broad taxonomic coverage, (4) integrated ML 98 

pipelines for data standardization, feature selection, benchmarking, nested coss-validation, 99 

hyperparameter tuning, feature importance, single-gene model building, multi-gene model 100 

(biomarker algorithm) building, model finalization, and (5) embedded network analysis and 101 

functional enrichment to contextualize candidate biomarkers within biological pathways. By 102 

integrating these processes, omicML distinctly connects transcriptomic analysis with predictive 103 

biomarker modeling, enabling users to convert DEG lists into actionable diagnostic or therapeutic 104 

targets without requiring coding expertise. omicML has been designed using six general modules 105 

(Figure 01). 106 

This paper also illustrates the effectiveness of omicML through a case study on monkeypox virus 107 

(MPXV) infections. In the light of the identification of a novel clade of 2022 Mpox and their 108 

biomarkers in our previous study [9], we have now used heterogeneous transcriptomic datasets to 109 

identify the conserved biomarkers across different clades and cell models. omicML identified 34 110 

shared DEGs through comparative analysis and employed a machine learning pipeline to prioritize 111 

six high-confidence biomarkers. Among these, RRAD emerged as the most robust single-gene 112 

predictor of MPXV infection. This example highlights omicML’s capacity to democratize ML-113 

driven biomarker discovery, providing a reproducible, scalable, cross-platform workflow for users 114 

navigating complex transcriptomic data. 115 

Materials and Methods 116 

Key steps are summarized in Figure 2 which outlines the omicML workflow within a 117 

comprehensive bioinformatics pipeline for transcriptomic data analysis, focusing on biomarker 118 

discovery and functional interpretation. 119 
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Figure 2 Detailed workflow of omicML 120 
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Data Acquisition and Input 121 

The analytical pipeline within the omicML framework commences with the acquisition of primary 122 

input datasets of raw sequencing derived from either microarray or RNA-Seq experiments. Initial 123 

data can either be generated de novo via web-based analytical suites (e.g., Galaxy [5]) or retrieved 124 

from curated repositories such as Gene Expression Omnibus (GEO) [10], ArrayExpress [11], The 125 

Cancer Genome Atlas (TCGA) [12], the Sequence Read Archive [13].The structured input 126 

system—an expression matrix and a metadata is designed to minimize errors during processing 127 

and provide a robust foundation for ML-driven biomarkers discovery. 128 

Preprocessing, Dimensionality Reduction, and Outlier Detection 129 

To ensure data integrity, initial preprocessing is employed by the filtration through WGCNA [14] 130 

and the imputation technique to mitigate low-variance genes and missing values respectively. 131 

Subsequently, dimension reduction techniques are used to visualize the high dimensional and 132 

complex gene expression data into lower dimension spaces. Additionally, hierarchical clustering 133 

(dendrogram-based view) is conducted to explore the grouping of samples facilitating the detection 134 

of potential outliers (user exclusion if necessary). 135 

Normalization and Batch Correction 136 

Normalization corrects the systematic biases and "uninteresting" factors, ensuring that observed 137 

differences between experimental conditions accurately reflect true biological variation. For 138 

microarray data, quantile normalization is applied for harmonizing intensity distributions across 139 

arrays. RNA-Seq data is normalized in median-of-ratios approach. 140 

Differential Gene Expression (DGE) Analysis 141 

In DGE analysis, differentially expressed genes (DEGs) are pointed out through pairwise 142 

comparison between samples with two different types of conditions. DGE analysis is employed 143 

through platform-specific statistical frameworks. DEGs are defined by |LFC| > 1 and padj < 0.05, 144 

visualized via volcano plots annotated with gene IDs. 145 

Gene ID Conversion and Annotation 146 

Gene (DEGs) IDs (Ensembl and Entrez) resulted in DGE analysis are converted to gene symbol 147 

and annotated with description using the R package the biomaRt [15]—incorporates gene 148 

annotation data for 367 organisms (214 from Ensembl and 153 from Ensembl Plants). Gene ID 149 

conversion ensures the visualization of volcano plots with respective gene symbols (if 150 

available) instead of gene IDs (Ensembl or Entrez). 151 

Comparative Transcriptomics and Integrative Analysis 152 

Comparative analysis of the outcomes in DGE analysis enhances our understanding of shared and 153 

unique gene expression patterns, revealing condition-specific molecular signatures. The result is 154 

visualized in a venn diagram using the ggVennDiagram [16] package, which can efficiently handle 155 

up to 7 gene sets. For analyses involving more than 7 gene lists, the results are visualized using an 156 

upset plot, offering a clear and scalable representation of complex gene set intersections. Users 157 

can analyze one or multiple datasets and compare the DEGs to identify intersecting genes shared 158 

across different contrasts as well as unique gene sets specific to individual contrasts. Log-fold 159 

metrics of both microarray and RNA-seq are integrated to generate the data for heatmap analysis. 160 

Machine Learning Analysis 161 

A suite of advanced ML frameworks was leveraged to systematically evaluate the classification 162 

efficacy of the DEGs as candidate biomarkers derived from transcriptomic profiles. The predictive 163 
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performance of the DEGs was quantified through iterative feature optimization and cross-164 

validation, identifying genes with robust discriminatory power. This integrative pipeline bridges 165 

transcriptomic discovery and computational validation, thereby ensuring the robustness of putative 166 

biomarkers in complex biological matrices. 167 

Data Preprocessing, Merging, and Batch-Effect Correction 168 

Raw multi-platform datasets are subjected to a systematic preprocessing workflow encompassing 169 

variance stabilization, and global normalization to attenuate platform-derived technical variability 170 

and facilitate cross-study comparability. Heterogeneous datasets (e.g., RNA-Seq and microarray) 171 

were integrated into a unified expression matrix, annotated with metadata columns for conditions 172 

and batch identifiers. Platform-induced technical artifacts are corrected via the ComBat [17], 173 

followed by Z-score to standardize feature distributions prior to downstream analyses. 174 

Dimensionality Reduction and Unsupervised Analysis 175 

Unsupervised learning techniques, including Principal Component Analysis (PCA), t-distributed 176 

Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection 177 

(UMAP), are applied to the normalized dataset to reduce dimensionality and reveal intrinsic data 178 

structures. Sample-to-sample relationships are further assessed by computing a Pearson correlation 179 

matrix, visualized as a correlation heatmap. 180 

Feature Selection 181 

Feature selection is performed using the Recursive Feature Elimination (RFE) algorithm [18] with 182 

a Random Forest classifier as the base estimator. In this analysis, the top 50% of are retained by 183 

default. Finally, the dataset is reduced to retain only the selected features for subsequent modeling 184 

and analysis. 185 

Model Selection, Nested Cross‐Validation, Hyperparameter Tuning and Model 186 

Benchmarking 187 

Six ML classifiers, linear and tree-based methods, including Logistic Regression (LR), Extra Trees 188 

(ET), Random Forest (RF), XGBoost (XGB), Gradient Boosting (GB), and AdaBoost (AB), are 189 

selected for benchmarking experiment using Python libraries scikit-learn [19] and XGBoost [20]. 190 

To evaluate model performance and extract optimal hyperparameters, two-tiered nested cross-191 

validation (CV) [21] is implemented. The 5-fold outer CV is used for model evaluation to maintain 192 

original class balance. In each of the five iterations, 4-folds (80% of the data) are utilized for 193 

training and hyperparameter selection; the remaining 1-fold (20%) is employed for testing. This 194 

process is repeated in all the 5-folds. To further optimize the model's performance, hyperparameter 195 

tuning is conducted. Within each outer training set, an inner 3-fold Stratified CV (2-fold for 196 

training and 1-fold for testing) is performed for hyperparameter tuning, evaluating all 197 

combinations of hyperparameter using GridSearchCV [20]. A baseline evaluation is also 198 

performed using each classifier’s default hyperparameters under the same outer CV framework. 199 

For every held-out test fold, several metrics—including Accuracy (ACC), balanced accuracy 200 

(BACC), precision (PREC), recall (REC), F1 score (F1), AUROC, area under the precision-recall 201 

curve (AUPRC), Matthews correlation coefficient (MCC), Cohen’s kappa (KAPPA), and log loss 202 

(LOGLOSS)—are computed for both the default and tuned pipelines.  203 

Performance evaluation 204 

The classification performance of each model is assessed through the calculation of the AUROC 205 

and AUPRC. By default, the model with the highest AUPRC and AUROC scores is selected for 206 

further analysis. But users can select any of the models which aligns well with their study. 207 
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Feature Importance 208 

For the selected model, feature importance is evaluated by calculating the mean decrease in 209 

accuracy, which measures the decrement of a model’s accuracy for the removal of individual 210 

feature. Based on this metric, the top 10 features are ranked, reflecting the features that contributed 211 

the most to the model's accuracy in classifying samples. 212 

Single-Gene Model Building to Determine the Best Biomarker 213 

For each of the top 10 features, a separate single-gene model is trained, and cross-validated using 214 

nested CV. The evaluation metrics (e.g., AUROC, AUPRC, ACC) are calculated accordingly. 215 

AUROC value indicates the ability of a feature (biomarker) to distinguish between, while the 216 

AUPRC value detects the ability of a feature to detect true positive case of the target condition. 217 

The single-gene model with the highest AUPRC and AUROC is considered as the best biomarker 218 

for the contrast. 219 

Feature Ablation Study to Finalize Multi-Gene Model (Biomarker Algorithm) 220 

To finalize the multi gene-model, the top ten features are incrementally reduced by removing the 221 

least important feature one at a time. The multi-gene model yielding the best AUPRC along with 222 

other matrices is selected as the prediction model. Nested CV, hyperparameter tuning, and model 223 

evaluation (e.g., AUROC, AUPRC, ACC) are performed to finalize the multi-gene model 224 

(biomarker algorithm).  225 

Network and Functional Enrichment Framework 226 

A set of genes’ symbols are uploaded and selected their corresponding organism to identify the 227 

PPI network and other enrichments. Initially, PPI networks are constructed using STRING-db [22] 228 

for the input gene symbols. Consequently, the common genes between the neighbor genes and 229 

query genes (need to be uploaded by user) are selected and their interaction network is visualized. 230 

The common genes are then analyzed to obtain their enrichments including Component, Process, 231 

Function, WikiPathways, KEGG, Reactome, HPO, Diseases, Pfam, SMART, InterPro, TISSUES, 232 

Compartments, NetworkNeighbors, PMID, Keyword with FDR<0.05. The top enriched terms are 233 

visualized using ggplot2. Moreover, users can identify neighbor genes and upload multiple genes 234 

directly to obtain their interaction networks and enrichments. 235 

Backend and Frontend Development 236 

The analytical pipelines are developed as APIs using FastAPI [23] to handle HTTP requests and 237 

enable communication with Python. R-based computations are executed using the rpy2 238 

(https://rpy2.github.io/) interface. This architecture enables seamless interoperability between 239 

Python and R. The entire workflow is containerized using docker [24] to configure and manage 240 

the server. The frontend is developed using Next.js (https://nextjs.org/) and TypeScript 241 

(https://www.typescriptlang.org/) to create an interactive Graphical User Interface (GUI). Next.js 242 

is chosen for its server-side rendering (SSR) capabilities, improved SEO, and efficient static site 243 

generation (SSG). TypeScript is incorporated to enhance code maintainability and reliability. To 244 

Deploy the full server, EC2 (https://aws.amazon.com/ec2/) service of AWS is utilized. 245 
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Results 246 

247 

Figure 3 The snapshot represents the interface of the omicML web tool 248 

We developed omicML, an intuitive web application integrating R and Python libraries to 249 

streamline transcriptomic analysis and biomarker prediction through a six-phase workflow: (i) 250 

differential gene expression analysis, (ii) gene annotation, (iii) comparative analysis, (iv) heatmap 251 

analysis, (v) learning analysis and validation, and (vi) functional analysis. The platform automates 252 

preprocessing and employs dimensionality reduction alongside incorporates exploratory tools 253 

(histograms, volcano plots) to identify DEGs. Machine learning workflows rigorously prioritize 254 

and validate biomarkers via data standardization, feature selection, benchmarking, nested cross-255 

validation, hyperparameter tuning, feature importance, single-gene model building, multi-gene 256 

model (biomarker algorithm) building, model finalization, culminating in predictive models 257 

selected by evaluation metrics (e.g., AUROC, AUPRC, accuracy). By uniting statistical, ML, and 258 

functional analyses within an intuitive graphical user interface, omicML enables researchers 259 

without rigorous programming expertise to rapidly translate expression data into validated 260 

biomarkers and novel biological hypotheses with some clicks only.261 

Case Study 262 

markerMPXV: Upregulation of RRAD and Building of a Biomarker Algorithm 263 

for Mpox Virus Infection 264 

To demonstrate the potential of omicML, we applied it to analyze real biological data, selected 265 

from Gene Expression Omnibus (GEO), NCBI, of human cell models infected with the 266 

monkeypox virus (MPXV) strains. The dataset, GSE11234 [25], comprises gene expression data 267 

generated via expression profiling by array experiment of MPXV (Zaire strain)-infected dermal 268 

fibroblasts and monocytes. The other dataset, GSE219036 [26], employs high-throughput 269 

sequencing of transcriptomes of human keratinocytes infected with three distinct MPXV strains: 270 
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Clade I (historically endemic), Clade IIa (prior endemic), and Clade IIb (exclusively classified 271 

during the 2022 global outbreak). Clade IIb shows distinguished expression pattern than the other 272 

clades, we identified in our previous article [9]. 273 

Pre-processing, and Normalization of Datasets 274 

In the microarray dataset, data of fibroblast (16 samples) and monocyte (36 samples) cell lines 275 

were normalized to mitigate technical variability and ensure cross-sample comparability, with 276 

boxplots (Figure 4A-D) visualizing the reduction in technical biases and improved post-277 

normalization distribution consistency. For the RNA-Seq dataset, expression distributions before 278 

and after normalization of keratinocyte cell-line samples were visualized in boxplots (Figure 4E-279 

F)  280 

Figure 4 Expression pattern of datasets before and after normalization. The distribution of 281 

expression data in the fibroblast (A-B), monocyte (C-D), and keratinocyte (E-F) cell lines are 282 
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shown. Each of the boxes represents 50 percent (median) of the data. The lower boundary (Q1) 283 

marks the 25th percentile, and the upper boundary (Q3) denotes the 75th percentile, with the 284 

central line indicating the median. 50% of data points lie above the median, and 50% fall below 285 

it, offering a clear statistical summary of gene expression variability within each cell type and 286 

normalization state. 287 

UMAP (Figure 5A, C, E) and hierarchical clustering (Figure 5B, D, F) analyses revealed distinct 288 

expression patterns between MPXV-infected and mock cell types. Hierarchical clustering 289 

identified four and two MPXV-infected samples in fibroblast (Figure 5B) and monocytes (Figure 290 

5D) respectively as outliers, underscoring technical or biological variability. Likewise, 291 

keratinocyte cell-lines (Figure 5E-F) exhibited high homogeneity, tight clustering with no 292 

misclassification between groups. 293 

Figure 5 Sample distribution patterns and outlier identification through dimensionality reduction 294 

(UMAP, t-SNE) and phylogenetic analysis. (A, C, and E) Clusters among samples identified from 295 

UMAPs. X-axis represents the first component (C1), which captures the highest variation in gene 296 

expression while Y-axis represents the second component (C2) which delineates the second most 297 
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variation in gene expression across the datasets. Each circle indicates a sample while varying 298 

colors indicating different treatments on the samples. (B, D, F) Phylogenetic trees visualized 299 

between the classes of samples to pinpoint the outlier samples. 300 

Differential Gene Expression Analysis, Annotation, and Identification of DEGs 301 

DGE analysis compared cell-line specific MPXV-infected samples to mock controls. In microarray 302 

data, 5,520 significant (padj < 0.05) annotated genes were evident in fibroblasts (4MPXV vs 303 

8Mock), while 3,548 in monocytes (14 MPXV vs. 20 mock). Consequently, 922 up- and 1,849 304 

down-regulated genes in fibroblasts (Figure 6A), and 590 up- and 277 down-regulated genes in 305 

monocytes (Figure 6B) were identified. Analyzing RNA-Seq data, substantial significant genes 306 

and DEGs were found in keratinocytes. After annotating significant Ensembl IDs, the following 307 

keratinocytes data were shown: (i) Clade I vs. mock: 2,631 upregulated and 2,212 downregulated 308 

(Figure 6C), (ii) Clade IIa vs. mock: 3,108 upregulated, 2,735 downregulated (Figure 6D), and 309 

(iii) Clade IIb vs. mock: 2,167 upregulated, 2,156 downregulated (Figure 6E).310 

311 

Figure 6 Upregulated and downregulated genes. X-axis denotes the log2 fold change (LFC) in 312 

gene expression. Positive values indicate upregulation whereas negative values indicate 313 

downregulation. Y-axis shows the negative log-transformed adjusted P-value. The red circles and 314 

the blue circles point out upregulated genes and downregulated genes, respectively. The horizontal 315 

line represents the threshold value of FDR smaller than 0.05, ascertaining the significance of the 316 

genes. However, the vertical lines represent the range of LFC less than -1 and greater than +1, 317 

nominating the significant genes as differentially expressed genes. 318 

Shared DEGs and Conserved Expression Patterns Across Cell Types and Clades 319 

Comparative analysis of DEGs revealed a conserved transcriptional response across MPXV clades 320 

(I, IIa, IIb) and cell types (fibroblasts, monocytes, and keratinocytes). Venn diagrams (Figure 7A-321 
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B) identified 27 up- and 7 downregulated genes common to all clades’ infection. Heatmap322 

visualization (Figure 7C) of these 34 shared DEGs further delineated clade- and cell type-specific323 

expression variability. This conserved signature underscores key genes are pivotal to MPXV324 

pathogenesis, irrespective of viral lineage or host cell type.325 

326 

Figure 7 Comparative analysis and Heatmap. Venn diagrams depict the commonness and 327 

intersection in upregulated (A) and downregulated (B) genes. The heatmap (C) displays the 328 

expression patterns of the 34 shared DEGs based on log fold-change (LFC) values across different 329 

clades. 330 
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Integration of Machine Learning Framework 331 

To enhance the reliability of biomarker discovery, automated machine learning (ML) algorithms 332 

were employed to evaluate the discriminatory power of identified DEGs in distinguishing MPXV-333 

infected samples from controls. From comparative transcriptomic analyses, 34 DEGs conserved 334 

across all MPXV clades (I, IIa, IIb) were selected as initial features.  335 

Primary data was constructed by merging normalized RNA-Seq (24 samples) and microarray 336 

datasets (124 samples), yielding 148 samples. Dimensionality reduction (PCA, t-SNE, UMAP), 337 

post batch effect correction and Z-score standardization, visualized the distribution of 148 samples 338 

based on the 34-feature expression profile (Figure 8A-C), while correlation analysis (Figure 9) 339 

assessed interdependencies among features. Feature selection refined the 34 DEGs to 17 non-340 

redundant biomarkers using recursive feature elimination with random forests (RF-RFE). Using 341 
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these 17 features, a reduced dataset was structured with the target classification (dependent 342 

variable). 343 

Figure 8 Assessment of the classification capabilities of features to cluster among the samples 344 

according to dimension reduction. The sample distributions are depicted using PCA (A), t-SNE 345 

(B), and UMAP (C) based on the 34 intersecting genes across infection of all clades of the Mpox 346 

virus. Similarly, distributions of samples are illustrated utilizing PCA (D), t-SNE (E), and UMAP 347 

(F) according to the top 10 genes ranked by importance score. Finally, discriminative power of348 

the six genes, selected for the final model, is highlighted through PCA (G), t-SNE (H), and349 

UMAP(I), plotted based on their expression levels. In the plots, each circle represents a sample350 

while "1" represents Mpox samples, and "0" represents samples infected by other pathogens.351 

Model Development and Benchmarking 352 

By combining the most important features associated with MPXV infection into a Composite 353 

metric (disease indicator), a machine learning model, markerMPXV, was built. Twelve 354 

classification algorithms were rigorously tested iteratively. Using nested cross-validation and 355 

hyperparameter tuning, the Extra Trees (ET) classifier emerged as the top performer, achieving an 356 

accuracy of 0.95, AUROC of 0.97, AUPRC of 0.94, and F1 score of 0.90 (Figure 10A-B). 357 

Benchmarking results (mean ± std across outer folds) for all models are determined. 358 

359 

360 
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Figure 9 Relationships among the features shared to infection of all MPXV clades. The correlation 361 

plot depicts the interactions among the 34 features common to all clade infections. A correlation 362 

value of +1 indicates the highest positive correlation, while -1 represents the strongest negative 363 

correlation between two features. Positive correlations are represented by red, whereas blue 364 

signifies negative correlations. 365 

Feature Importance analysis and Single-Gene Models Facilitated Biomarker Prioritization 366 

by Ranking  367 

The ET model ranked top 10 features by importance (Figure 10C). Single-gene Models ranked 368 

RRAD as the top among 10 biomarkers selected by feature importance. RRAD achieved robust 369 

performance (AUROC: 0.90; AUPRC: 0.85; F1: 0.76; accuracy: 0.91), demonstrating strong 370 

discriminative power between Mpox-infected and control samples (Figure 11A-B). 371 

372 

Figure 10 The benchmarking experiment identifies the best-fitting classifier for the dataset. (A) 373 

The AUPRC plot, also known as the precision-recall plot, illustrates the performance of six 374 

classifiers based on nested cross-validation. (B) The AUROC plot represents the accuracy of the 375 

classifiers to build models. (C) Highlights the ranking of the top 10 features based on their 376 

importance scores. 377 
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Feature Ablation and Optimal Multi-Gene Panel 378 

A feature ablation study revealed that combining six genes (ZNF212, ZNF451, PLAGL1, NFAT5, 379 

ICAM5, RRAD) surpassed single-gene models, achieving superior performance (AUROC: 0.95; 380 

AUPRC: 0.92; F1: 0.84; accuracy: 0.94) (Figure 11 C-D). This six-gene panel was selected for 381 

final model refinement.  382 

383 

Figure 11 Evaluation of single- and multi-gene models. (A, B) The AUPRC and AUROC plots 384 

depict the performance and class-distinguishing ability of individual features. (C, D) illustrate the 385 

optimal combination of features for model building, determined by the ranking of performance 386 

(PR) and AUC scores. The evaluation ranking is based on AUPRC and AUROC values. 387 

388 

Final Model Performance and Validation 389 

Consequently, the predictive model was built and finalized using the expression of the six genes 390 

(ZNF212, ZNF451, PLAGL1, NFAT5, ICAM5, RRAD), achieving an accuracy of 0.94 on train data 391 

(AUPRC: 0.91, AUROC: 0.93, F1: 0.84) and 0.93 on test data (AUPRC 0.91, AUROC 0.96, F1 392 

0.83) (Figure 12A-B). The confusion matrices of train and test data for the finalized models are 393 

shown in Figure 12C-D. These results underscore the model’s reliability in diagnosing Mpox 394 

infection and its potential for clinical translation. 395 
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396 

Figure 12 Performances of the Final Model X. (A, B) Model evaluation scores of AUPRC and 397 

AUROC, representing the performance of both training and testing of the final model. (C) 398 

Prediction outcomes on the test (C) and train (D) data are presented using the confusion matrix. 399 

Network, Functional, and Enrichment Analysis 400 

To elucidate the functional roles of the six predicted biomarkers in MPXV infection, omicML 401 

mapped their interaction networks using the STRING database. 3,880 neighbor genes interacting 402 

with the six-gene panel (ZNF212, ZNF451, PLAGL1, NFAT5, ICAM5, RRAD) were identified. 403 

Each of the six genes were also analyzed individually and top 20 interacting neighbor genes’ 404 

network was plotted. Genes overlapping between the neighbor network and DEG lists were 405 

identified with enrichment analysis revealing their involvement in key biological processes and 406 

molecular functions. 407 

Uniqueness of the Six-Gene Model as MPXV Biomarkers 408 

To validate the hallmark signatures of Mpox infection of identified six-gene model including 409 

RRAD, transcriptomic datasets (GSE141932 [27], GSE157103 [28], GSE184320 [29], and 410 

GSE11234 [25]) of other potential viruses including varicella, ebola, HIV, and SARS-Cov-2 have 411 

been analyzed via omicML. Only ICAM5 (varicella) and ZNF451 (Ebola) exhibited marginal 412 

upregulation near significance thresholds, while other genes showed no differential expression. 413 

Interestingly, none of the six genes met statistical significance (padj < 0.05, |LFC| > 1) in smallpox-414 

related varicella-zoster, SARS-CoV-2, HIV, or Ebola infections, confirming their specificity to 415 
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MPXV. This lack of cross-viral relevance underscores the panel’s uniqueness as a robust MPXV 416 

signature. 417 

Figure 13 Expression level of selected biomarkers in other virus infection in human. The heatmap 418 

highlighting the scaled expression levels of six selected genes (ICAM5, ZNF451, NFAT5, RRAD, 419 

ZNF212, and PLAGL1) across four viral infection conditions: Varicella, Ebola, SARS, and HIV. 420 

The intensity of the colors reflects LFC values, where red indicates upregulation, blue indicates 421 

downregulation, and gray indicates no significance. Cladogram was applied to both genes and 422 

infection conditions to comprehend relationships pattern 423 

Discussions 424 

The advent of high-throughput omics data and biomarker discovery techniques has resulted in a 425 

fragmented and specialized ecology of isolated platforms, rendering end-to-end analysis laborious. 426 

In practice, researchers frequently need to integrate disparate software for each task (e.g., DGE 427 

analysis in R/Python, annotation in external databases, GO pathway analysis in another tool) via 428 

manual file transfers and custom scripting, resulting in inefficiencies, errors, and reproducibility 429 

issues for non-programmers [30]. Most conventional pipelines (e.g., DESeq2, edgeR, limma) and 430 

annotation services (biomaRt, DAVID) are available solely as code libraries or standalone web 431 

applications, whereas point-and-click platforms (DEBrowser, GenePattern, GEO2R) generally 432 

cater to only a limited range of tasks, neglecting advanced procedures such as cross-study meta-433 

analyses, batch correction, dataset integration, or machine learning (ML) investigations. 434 

Consequently, even standard procedures like quality control, normalization, and batch correction 435 

necessitate bioinformatics assistance, thereby constraining scalability and impeding workflow 436 

efficiency. 437 

Moreover, workflows that use machine learning are typically absent. Traditional biomarker 438 

investigations often culminate with the compilation of a list of differentially expressed candidates, 439 

often evaluating them individually. Few tools offer built-in ML pipelines (feature selection, model 440 

training, benchmarking) to rigorously evaluate candidate biomarkers. However, Leclercq et al. 441 
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indicated that current auto-ML systems are either inadequately designed for biological datasets or 442 

excessively complex for individuals lacking expertise in machine learning to utilize effectively 443 

[31]. In addition, the majority of machine learning technologies are inaccessible to biologists due 444 

to their support for a restricted array of algorithms, the necessity for manual hyperparameter 445 

optimization, or the assumption of programming proficiency [31]. Finally, inflexible, hard-coded 446 

pipelines lack the modularity and graphical interfaces necessary for seamless adaptation across 447 

various omics modalities or research strategies. The discipline presently needs a unified, adaptable 448 

platform that seamlessly integrates (1) DGE analysis, (2) annotation, (3) cross-study comparison, 449 

(4) ML-based validation, and (5) functional enrichment in an automated, user-friendly manner.450 

Bench scientists encounter obstacles at every stage of biomarker discovery [30,32]. We introduce451 

omicML, specifically engineered to address these deficiencies by offering a comprehensive,452 

graphical platform for transcriptome biomarker identification.453 

All fundamental preprocessing and differential expression procedures are consolidated into a454 

single platform, eliminating the necessity for users to transfer data across programs. Investigators455 

can define experimental groups with minimal clicks and promptly obtain differentially expressed456 

genes (DEGs) along with corresponding graphs. Integrated annotation (ID conversion, pathway457 

mapping) and comparative modules (e.g., Venn overlaps across conditions) obviate the need for458 

manual scripting or file transfers. The new approach eliminates the "silos" of disparate459 

technologies, allowing for seamless transitions of outputs from data extraction to annotation to460 

comparative modules. This immediately tackles the fragmentation problem identified in the461 

literature.462 

omicML incorporates an extensive, machine learning-driven validation suite to overcome the463 

shortcomings of traditional biomarker procedures. The platform transcends conventional methods464 

that only identify statistical connections by automating feature selection, model benchmarking465 

using nested cross-validation, and conducting ablation studies to thoroughly evaluate biomarker466 

stability and significance. omicML employs tools such as BioDiscML for comprehensive searches467 

and cross-validated classifiers, ensuring that biomarker candidates are evaluated using advanced468 

methodologies without necessitating user coding [31].469 

provided as a graphical, no-code interface designed for anyone without a background in470 

bioinformatics. Like BIOMEX, which illustrated the use of an interactive multi-omics platform471 

for laboratory researchers, the new program offers menus and wizards in lieu of command lines.472 

Non-experts may upload their data, configure parameters, and examine outcomes presented as473 

publication-quality graphs and tables. The technology automates laborious activities such as batch474 

correction and file merging, guaranteeing reproducibility without manual involvement. Bench475 

scientists can go from raw data to validated biomarker panels solely within the GUI, eliminating476 

the necessity for Python or R coding. This modular approach guarantees flexibility and477 

reproducibility, allowing pipelines to be re-executed or modified for new datasets.478 

In our case study, we conducted a comparative transcriptomic analysis to identify DEGs and479 

predictive biomarkers across multiple MPXV clades’ infection because of limited therapeutic480 

options and the growing threat of a broader pandemic of monkey pox viruses. Using keratinocytes,481 

dermal fibroblast, and monocyte cell-types infected with various MPXV clades, we found a higher482 

number of DEGs in skin-derived cells compared to monocytes, a finding consistent with prior483 

observations of increased viral load in keratinocytes Figure 5 (A-E). Notably, recent clades484 

appeared to elicit broader gene dysregulation compared to the older Zaire strain, with 34 DEGs485 

(27 upregulated, 7 downregulated) consistently expressed across all three cell types irrespective of486 

clade, suggesting their potential relevance in distinguishing MPXV pathogenesis Figure 6 (A &487 
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B). To evaluate the diagnostic efficacy of these DEGs, we implemented machine learning models 488 

that classified MPXV-infected versus control samples using integrated RNA-Seq and microarray 489 

data. After batch effect correction, feature selection and benchmarking experiment, the Extra Trees 490 

Classifier uncovered RRAD as the most potent single-gene biomarker (AUROC: 0.90; AUPRC: 491 

0.85; F1: 0.76; accuracy: 0.91). Furthermore, a six-gene panel (ZNF212, ZNF451, PLAGL1, 492 

NFAT5, ICAM5, RRAD) exhibited superior classification performance (AUROC: 0.95; AUPRC: 493 

0.92; F1: 0.84; accuracy: 0.94), underscoring its utility for robust biomarker-based mpox detection. 494 

The identified biomarkers are pivotal in orchestrating host responses to MPXV infection, 495 

interacting with both upregulated and downregulated genes. Among the six key genes, five regulate 496 

critical cellular processes: ZNF212, ZNF451, NFAT5, and PLAGL1 govern gene expression and 497 

biological pathways, while RRAD modulates molecular functions. The sixth gene, ICAM5, is 498 

central to cellular adhesion. Collectively, these genes form an interconnected network influencing 499 

signal transduction and immune responses, highlighting their systemic role in host-pathogen 500 

interactions. 501 

RRAD and ICAM5 are central to immune evasion [33,34]. RRAD suppresses NF-κB signaling by 502 

binding to its p50/p65 heterodimer, blocking inflammatory protein synthesis and cytokine 503 

production [34,35]. This inhibition dampens immune activation, potentially aiding MPXV 504 

survival. Notably, RRAD overexpression is linked to oncogenesis in skin cells and glucose 505 

metabolism dysregulation, contributing to type II diabetes [36,37]. Similarly, ICAM5, a neuronal 506 

immune modulator, is upregulated in MPXV-infected cells, impairing phagocytosis and T-cell 507 

responses [33,38]. Its overexpression may suppress innate and adaptive immunity, enhancing viral 508 

persistence and disease severity. 509 

In contrast, NFAT5 and ZNF451 activate immune defenses. NFAT5 promotes immune cell survival, 510 

proliferation, and differentiation (e.g., macrophages, T-cells) while regulating NF-κB and Treg/Th 511 

cell pathways. However, its overexpression risks rheumatoid arthritis and tumor progression, and 512 

may stimulate viral replication [39,40]. ZNF451 enhances immunity by inhibiting TGF-β 513 

signaling, which otherwise suppresses NK cells, T-cells, and antigen-presenting cells [39]. By 514 

countering TGF-β, ZNF451 amplifies immune activation, though its role in MPXV-specific 515 

responses warrants further study. 516 

PLAGL1 governs apoptosis, cell cycle control, and TP53-mediated transcription. As a tumor 517 

suppressor, its overexpression regulates aberrant proliferation yet is paradoxically associated with 518 

oncogenesis [41,42]. In MPXV infection, PLAGL1-induced apoptosis may restrict viral 519 

dissemination, while its multiple functions in cancer underscore context-dependent effects on host-520 

pathogen interactions. 521 

Limitations 522 

While omicML currently provides a comprehensive GUI-driven pipeline for transcriptomics-based 523 

biomarker discovery, more sophisticated functionalities are yet to be integrated in next versions 524 

(omicML 2.0). omicML is presently tailored to bulk transcriptomic data and does not include 525 

network-based or clinical modeling modules. In practice, many biomarker studies rely on gene co-526 

expression network analysis and survival modeling to uncover complex patterns and clinical 527 

relevance, so these capabilities are absent in the current version. 528 

Conclusions 529 

omicML represents a novel end-to-end framework for biomarker discovery by integrating many 530 

analytical steps into a cohesive, user-friendly platform. Its graphical interface guides users from 531 

data upload to normalization, differential expression, annotation, and machine-learning evaluation, 532 
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therefore obviating the necessity for complex coding. This integrated pipeline unifies predictive 533 

modelling and biomarker selection into a cohesive approach. omicML democratizes access to 534 

complicated analyses by offering a GUI-based approach, allowing physicians and bench 535 

researchers without required programming abilities to execute advanced transcriptomics 536 

procedures. By reducing technical obstacles and offering a comprehensive, cohesive toolkit, 537 

omicML is positioned to significantly influence translational bioinformatics and the advancement 538 

of clinically pertinent molecular diagnostics. 539 

Besides, omicML addressed the urgent need for mpox biomarkers and identified a six-gene model 540 

(ZNF212, ZNF451, PLAGL1, NFAT5, ICAM5, and RRAD) achieving exceptional diagnostic 541 

accuracy (AUROC: 0.95; AUPRC: 0.92) out of 34 clade-independent DEGs. This demonstrates 542 

omicML’s capacity to bridge transcriptomic insights with ML-driven validation, accelerating 543 

biomarker discovery for emerging pathogens and beyond. 544 

Abbreviations 545 

GUI: Graphical User Interface 546 

DGE: Differential gene expression 547 

DEGs: Differentially expressed genes 548 

LFC: Log2 fold change 549 

FDR: False Discovery Rate 550 

Padj: P-adjusted Value 551 

PCA: Principal Component Analysis 552 
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Mpox: Monkey Pox 572 

MPXV: Monkey Pox Virus 573 

GEO: Gene Expression Omnibus 574 
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